Operaciones con vectores: Producto escalar Producto escalar de dos vectores El producto escalar de dos vectores u → \overrightarrow u u y v → \overrightarrow v v no nulos, es el número real que se obtiene al multiplicar el producto de sus módulos por el coseno del ángulo que forman
u → ⋅ v → = ∣ u → ∣ ⋅ ∣ v → ∣ ⋅ cos ( u → , v → ^ ) \overrightarrow u\cdot \overrightarrow v= |\overrightarrow u|\ \cdot |\overrightarrow v| \cdot \cos(\widehat{\overrightarrow u, \overrightarrow v}) u ⋅ v = ∣ u ∣ ⋅ ∣ v ∣ ⋅ cos ( u , v )
Recuerda que: si el producto escalar de dos vectores u → \overrightarrow u u y v → \overrightarrow v v no nulos es igual a 0 0 0 , estos dos vectores son perpendiculares ya que cos ( 90 ) = 0 \cos(90)=0 cos ( 90 ) = 0 .
Ejemplo Calcula el producto escalar de los vectores u → ( 1 , 3 ) \overrightarrow u(1,3) u ( 1 , 3 ) y v → ( 3 , 2 ) \overrightarrow v(3,2) v ( 3 , 2 ) sabiendo que forman un ángulo de 60 º 60º 60º
u → ⋅ v → = ∣ u → ∣ ⋅ ∣ v → ∣ ⋅ ( c o s u → , v → ^ ) = 1 2 + 3 2 ⋅ 3 2 + 2 2 ⋅ cos ( 60 ) = 10 ⋅ 13 ⋅ 0 , 5 = 5 , 7 ‾ \overrightarrow u\cdot \overrightarrow v= |\overrightarrow u|\ \cdot |\overrightarrow v| \cdot \ (cos\widehat{\overrightarrow u, \overrightarrow v})=\sqrt{1^2+3^2}\cdot\sqrt{3^2+2^2}\cdot\cos(60)=\sqrt{10}\cdot \sqrt{13}\cdot 0,5= \underline{5,7} u ⋅ v = ∣ u ∣ ⋅ ∣ v ∣ ⋅ ( cos u , v ) = 1 2 + 3 2 ⋅ 3 2 + 2 2 ⋅ cos ( 60 ) = 10 ⋅ 13 ⋅ 0 , 5 = 5 , 7
Propiedades del producto escalar 1.
Si
u → ≠ 0 ⟹ u → ⋅ u → = ∣ u → ∣ 2 > 0 \overrightarrow u\neq0\implies \overrightarrow u \cdot \overrightarrow u=|\overrightarrow u|^2 \gt0 u = 0 ⟹ u ⋅ u = ∣ u ∣ 2 > 0
2.
u → ⋅ v → = v → ⋅ u → \overrightarrow u \cdot \overrightarrow v=\overrightarrow v \cdot \overrightarrow u u ⋅ v = v ⋅ u , ya que
cos ( u → , v → ^ ) = cos ( v → , u → ^ ) \cos(\widehat{\overrightarrow u, \overrightarrow v})=\cos(\widehat{\overrightarrow v, \overrightarrow u}) cos ( u , v ) = cos ( v , u )
3.
λ ( u → ⋅ v → ) = ( λ u → ) ⋅ v → = u → ⋅ ( λ v → ) \lambda(\overrightarrow u\cdot\overrightarrow v)=(\lambda\overrightarrow u)\cdot \overrightarrow v=\overrightarrow u\cdot (\lambda\overrightarrow v) λ ( u ⋅ v ) = ( λ u ) ⋅ v = u ⋅ ( λ v )
4.
u → ⋅ ( v → + w → ) = u → ⋅ v → + u → ⋅ w → \overrightarrow u\cdot (\overrightarrow v+ \overrightarrow w)=\overrightarrow u\cdot \overrightarrow v+\overrightarrow u \cdot \overrightarrow w u ⋅ ( v + w ) = u ⋅ v + u ⋅ w
Ejemplo Sabiendo que v → ⋅ u → = 3 \overrightarrow v\cdot\overrightarrow u=3 v ⋅ u = 3 y que u → ⋅ w → = 5 \overrightarrow u\cdot \overrightarrow w=5 u ⋅ w = 5 , calcula 4 u → ⋅ ( v → + w → ) 4\overrightarrow u\cdot(\overrightarrow v + \overrightarrow w) 4 u ⋅ ( v + w )
4 u → ⋅ ( v → + w → ) = 4 u → ⋅ v → + 4 u → ⋅ w → = 4 ( u → ⋅ v → ) + 4 ( u → ⋅ w → ) = = 4 ( v → ⋅ u → ) + 4 ( u → ⋅ w → ) = 4 ⋅ 3 + 4 ⋅ 5 = 32 ‾ 4\overrightarrow u\cdot(\overrightarrow v + \overrightarrow w)=4\overrightarrow u\cdot \overrightarrow v+4\overrightarrow u\cdot \overrightarrow w=4(\overrightarrow u\cdot \overrightarrow v)+4(\overrightarrow u\cdot \overrightarrow w)=\newline=4(\overrightarrow v\cdot \overrightarrow u)+4(\overrightarrow u\cdot \overrightarrow w)=4\cdot 3+4\cdot 5=\underline{32} 4 u ⋅ ( v + w ) = 4 u ⋅ v + 4 u ⋅ w = 4 ( u ⋅ v ) + 4 ( u ⋅ w ) = = 4 ( v ⋅ u ) + 4 ( u ⋅ w ) = 4 ⋅ 3 + 4 ⋅ 5 = 32
Expresión analítica del producto escalar en la base canónica 2 dimensiones Tomando como base la base canónica { i → , j → } \lbrace\overrightarrow i,\overrightarrow j\rbrace { i , j } , se verifica que, al ser una base ortonormal (todos los miembros de la base son perpendiculares entre sí y tienen norma 1), el producto escalar de dos vectores u → \overrightarrow u u y v → \overrightarrow v v puede expresarse como:
u → ⋅ v → = ( u 1 i → + u 2 j → ) ⋅ ( v 1 i → + v 2 j → ) = u 1 v 1 i → ⋅ i → + u 1 v 2 i → ⋅ j → + u 2 v 1 j → ⋅ i → + u 2 v 2 j → ⋅ j → = u 1 v 1 i → ⋅ i → + u 2 v 2 j → ⋅ j → = u 1 v 1 + u 2 v 2 ⏟ \overrightarrow u\cdot \overrightarrow v=(u_1\overrightarrow i+u_2\overrightarrow j)\cdot (v_1\overrightarrow i+v_2\overrightarrow j)=u_1v_1\overrightarrow i\cdot\overrightarrow i +u_1v_2\overrightarrow i\cdot\overrightarrow j +u_2v_1\overrightarrow j\cdot\overrightarrow i+u_2v_2\overrightarrow j\cdot\overrightarrow j =u_1v_1\overrightarrow i\cdot\overrightarrow i + u_2v_2\overrightarrow j\cdot\overrightarrow j=\underbrace{u_1v_1+u_2v_2} u ⋅ v = ( u 1 i + u 2 j ) ⋅ ( v 1 i + v 2 j ) = u 1 v 1 i ⋅ i + u 1 v 2 i ⋅ j + u 2 v 1 j ⋅ i + u 2 v 2 j ⋅ j = u 1 v 1 i ⋅ i + u 2 v 2 j ⋅ j = u 1 v 1 + u 2 v 2
3 dimensiones Para 3 dimensiones, la base canónica es { i → , j → , k → } \lbrace\overrightarrow i, \overrightarrow j, \overrightarrow k\rbrace { i , j , k } , también ortonormal; por lo que siguiendo la misma demostración que en el caso anterior se obtiene:
u → ⋅ v → = u 1 v 1 + u 2 v 2 + u 3 v 3 ⏟ \overrightarrow u\cdot \overrightarrow v=\underbrace{u_1v_1+ u_2v_2 + u_3v_3} u ⋅ v = u 1 v 1 + u 2 v 2 + u 3 v 3
Ejemplo Calcula el producto escalar de los vectores u → = ( 2 , − 1 ) \overrightarrow u=(2,-1) u = ( 2 , − 1 ) y v → = ( 1 , 1 ) \overrightarrow v=(1,1) v = ( 1 , 1 )
u → ⋅ v → = 2 ⋅ 1 + 1 ⋅ ( − 1 ) = 1 ‾ \overrightarrow u \cdot \overrightarrow v=2\cdot 1 + 1\cdot (-1)=\underline1 u ⋅ v = 2 ⋅ 1 + 1 ⋅ ( − 1 ) = 1
Interpretación geométrica del producto escalar
Geométricamente, el producto escalar se puede definir como el módulo de un vector por la proyección ortogonal del otro sobre él. Teniendo en cuenta que proy u → t → = O Q ′ → \operatorname {proy}_{\overrightarrow u} \overrightarrow t=\overrightarrow {OQ'} proy u t = O Q ′
∣ u → ⋅ t → ∣ = ∣ proy u → t → ∣ ⋅ u → = ∣ proy t → u → ∣ ⋅ t → |\overrightarrow u\cdot \overrightarrow t|=|\operatorname {proy}_{\overrightarrow u} \overrightarrow t|\cdot \overrightarrow u= |\operatorname {proy}_{\overrightarrow t} \overrightarrow u|\cdot \overrightarrow t ∣ u ⋅ t ∣ = ∣ proy u t ∣ ⋅ u = ∣ proy t u ∣ ⋅ t
Así, también podemos concluir que:
∣ proy v → u → ∣ = ∣ u → ⋅ v → ∣ ∣ v → ∣ ∣ proy u → v → ∣ = ∣ u → ⋅ v → ∣ ∣ u → ∣ |\operatorname{proy}_{\overrightarrow v}\overrightarrow u|=\cfrac{|\overrightarrow u\cdot \overrightarrow v|}{|\overrightarrow v|} \qquad \qquad |\operatorname{proy}_{\overrightarrow u}\overrightarrow v|=\cfrac{|\overrightarrow u\cdot \overrightarrow v|}{|\overrightarrow u|} ∣ proy v u ∣ = ∣ v ∣ ∣ u ⋅ v ∣ ∣ proy u v ∣ = ∣ u ∣ ∣ u ⋅ v ∣