Everything to learn better...

Home

Maths

Further kinematics

Differentiating vectors

Differentiating vectors

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Meera

Summary

Differentiating vectors

In a nutshell

Calculus can be used with vectors to solve problems involving 2D motion with variable acceleration. The general form of a displacement vector is r=f(t)i+g(t)j\bold r = f(t) \bold i + g(t) \bold j, and you can differentiate both functions separately.  


Equations

Description

Equations

Expression of the velocity given that r=xi+yj\bold r = x\bold i + y \bold j.

v=drdt=r˙=x˙i+y˙j\bold v = \cfrac{d \bold r}{dt} = \bold{\dot r} = { \dot x}\bold i + {\dot y}\bold j​​

Expression of the acceleration given that r=xi+yj\bold r = x \bold i + y \bold j.​

a=d2rdt2=r¨=x¨i+y¨j\bold a = \cfrac{d^2 \bold r}{dt^2} = \bold{\ddot r} = { \ddot x}\bold i + {\ddot y}\bold j


a=dvdt=v˙=v˙xi+v˙yj\bold a = \cfrac{d \bold v}{dt} = \bold{\dot v} = { \dot v_x}\bold i + {\dot v_y}\bold j​​​


Differentiating vectors

Example 1

A body has a position vector r=[(3t311t2)i+(4t+10t2)j] m\bold r = \left[(3t^3 -11 t^2) \bold i + (-4t + 10 t^2)\bold j\right] \ m with respect to a fixed origin. 


i) Find the speed at t=10 st = 10 \ s to two decimal places.

ii) Calculate the acceleration at that time. 


i) Find the speed at t=10 st= 10 \ s to two decimal places.


Using v=drdt=r˙\bold v = \cfrac{d\bold r}{dt} = \bold{\dot r}  gives: 

v=drdt==ddt[(3t311t2)i+(4t+10t2)j]==(9t222t)i+(4+20t)j\begin{aligned}\bold v &= \cfrac{d\bold r}{dt} =\\&= \cfrac{d}{dt}\left[(3t^3 - 11 t^2) \bold i + (-4t +10t^2)\bold j \right]=\\&=(9t^2 - 22 t)\bold i + (-4+20t)\bold j \end{aligned}​​


Substituting t=10 st= 10 \ s:

v=(680i+196j) ms1\bold v = (680 \bold i + 196 \bold j) \ ms^{-1}​​


Now, the speed is given by the formula Speed=vx2+vy2Speed = \sqrt{v_x^2 + v_y ^2}. Therefore: 

Speed=6802+1962=707.68 ms1 (2 d.p.)Speed = \sqrt{680^2 + 196 ^2} = \underline{707.68 \ ms^{-1} \ (2 \ d.p.) }​​


ii) Calculate the acceleration.


Using a=dvdt=v˙\bold a = \cfrac{d\bold v}{dt} = \bold{\dot v} you can write: 

a=dvdt==ddt[(9t222t)i+(4+20t)j]==(18t22)i+20j ms2\begin{aligned}\bold a &= \cfrac{d\bold v}{dt} =\\&= \cfrac{d}{dt}\left[(9t^2 - 22 t) \bold i + (-4+20t) \bold j \right]=\\&= (18 t -22) \bold i + 20 \bold j \ ms^{-2}\end{aligned}​​


Therefore, at that time (t=10 st=10\ s​) you have: 

a=(158i+20j) ms2\underline{\bold a = (158 \bold i + 20 \bold j) \ ms^{-2}}​​


Example 2

A body with a mass m=10 kgm = 10 \ kg is acted on by a force P NP \ N. Relative to the origin, its position vector is r=(4t2i+10t32j) m.\bold r = \left(4t^2 \bold i + 10 t^{\frac32} \bold j\right) \ m.


i) Find the speed of this body when t=10 st = 10 \ s to one decimal place.

ii) Find the acceleration when t=3 s.t=3\ s.

iii) Calculate the force P NP \ N acting on the body at that time. 


i) Find the speed of this body when t=10 s.t=10\ s.


First find the velocity: 

v=drdt==ddt(4t2i+10t32j)==8ti+15tj\begin{aligned}\bold v &= \cfrac{d\bold r}{dt} =\\&= \cfrac{d}{dt}\left(4t^2 \bold i + 10 t^{\frac32} \bold j\right)=\\&=8t \bold i +15 \sqrt t \bold j \end{aligned}​​​


Substitute in t=10 st=10 \ s:

v=(80i+1510j)m.s1\bold v = (80 \bold i + 15 \sqrt{10} \bold j) m.s^{-1}​​


Therefore,use Speed=vx2+vy2Speed = \sqrt{v_x^2 + v_y^2} to give:

Speed=802+(1510)2=93.0 ms1 (1 d.p.)Speed = \sqrt{80^2 +\left(15\sqrt{10}\right)^2}= \underline{93.0\ ms^{-1} \ (1 \ d.p.)}​​


ii) Find the acceleration when t=3 s.t=3\ s.

Use a=dvdt=v˙\bold a = \cfrac{d \bold v}{dt} = \bold {\dot v} to give:

a=dvdt==ddt(8ti+15t12j)==(8i+152t  j) ms2\begin{aligned}\bold a &= \cfrac{d \bold v}{dt} =\\&= \cfrac{d}{dt}(8t \bold i +15t^\frac12 \bold j)=\\& = \left(8 \bold i + \cfrac{15}{2\sqrt{t}} \ \ \bold j\right) \ ms^{-2}\end{aligned}​​


Substituting t=3 s.t = 3 \ s .

a=(8i+1523  j) ms2\underline{\bold a = \left( 8 \bold i + \cfrac{15}{2\sqrt3}\ \ \bold j\right) \ ms^{-2} }​​


iii) Calculate the force acting on the body at that time. 

Use F=m×a\bold F = m \times \bold a to give: 

F=m×a=(80i+253 j) N\bold F = m \times \bold a = \underline{\left(80 \bold i +25 \sqrt{3} \ \bold j\right) \ N }​​


Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What do you obtain when you differentiate the velocity vector once?

What do you obtain when you differentiate the position vector twice?

What do you obtain when you differentiate the position vector once?

Beta

I'm Vulpy, your AI study buddy! Let's study together.