Everything to learn better...

Home

Maths

Constant acceleration

Constant acceleration: Deriving formulae

Constant acceleration: Deriving formulae

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Mohammed

Summary

Constant acceleration: Deriving formulae

​​In a nutshell

Using the velocity-time graph, you can derive more formulae to work out the motion of an object with constant acceleration. 


Equations


description

equation

Velocity of an object with constant acceleration.
v=u+atv=u+at​​
Displacement of an object over a certain time.
s=(u+v2)ts=\bigg(\dfrac{u+v}{2}\bigg)t​​
Acceleration of an object.
a=vuta=\dfrac{v-u}{t}​​


Variable definitions


quantity name

symbol

unit name

unit

DisplacementDisplacement​​
ss​​
MetreMetre​​
mm​​
Initial velocityInitial\ velocity​​
uu​​
Metres per secondMetres\ per\ second​​
ms1ms^{-1}​​
Final velocityFinal\ velocity​​
vv​​
Metres per secondMetres\ per\ second​​
ms1ms^{-1}​​
AccelerationAcceleration​​
aa​​
Metres per second squaredMetres\ per\ second\ squared​​
ms2ms^{-2}​​
TimeTime​​
tt​​
SecondsSeconds​​
ss



Deriving formulae

You need to know how to derive two formulae from a velocity-time graph.

Maths; Constant acceleration; KS5 Year 12; Constant acceleration: Deriving formulae


The acceleration of an object can be worked out using the gradient of a velocity-time graph: 


a=vuta=\dfrac{v-u}{t}​​


Rearrange this to make vv the subject:

at=vuat=v-u

​​

v=u+at\boxed{v = u+at}​​


The displacement of an object can be worked out by the area under the graph. You can work out the area using the formula for the area of a trapezium:


Area of a trapezium=(a+b2)hArea\ of\ a\ trapezium= \bigg(\dfrac{a+b}{2}\bigg)h


In the velocity-time graph:

a=u0=ua=u-0=u, b=v0=vb=v-0=v, h=th=t

​​

Substitute these values into the formula for the area of a trapezium:


s=(u+v2)t\boxed{s=\bigg(\dfrac{u+v}{2}\bigg)t}​​

 

These formulae can be rearranged to make each variable the subject, and then applied to objects in motion.


Example

An object starts at point A with a velocity of 2 ms12\ ms^{-1} and gets to point B after 2020​ seconds, reaching a velocity of 10 ms110\ ms^{-1}. Work out:

a: The total displacement between points A and B.

b: The acceleration of the object between these points.


Start by identifying the known variables:

u=2 ms1u=2\ ms^{-1}v=10 ms1v=10\ ms^{-1}t=20 st=20\ s


a: Formula for displacement: 

s=(u+v2)ts=\bigg(\dfrac{u+v}{2}\bigg)t

​​

Substitute the known variables:

s=(2+102)20s=\Big( \dfrac{2+10}{2}\Big)20​​


s=(122)20=6×20=120s = \bigg(\dfrac{12}{2}\bigg)20 = 6\times 20 = 120​​


The displacement of the object is 120 m\underline{ 120 \ m}.


b: Formula for acceleration:

a=vuta=\dfrac{v-u}{t}


Substitute the known variables:

a=10220=820=410a=\dfrac{10-2}{20}=\dfrac{8}{20}=\dfrac{4}{10}​​


The acceleration of the object is 0.4 ms2\underline{0.4 \ m\cdot s^{-2}}.


Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the formula for final velocity when there is constant acceleration?

How do I work out acceleration from a velocity-time graph?

How do I work out displacement from a velocity-time graph?

Beta

I'm Vulpy, your AI study buddy! Let's study together.