Vectors in 3D In a nutshell Vectors can be used to describe position and displacement in three dimensions. As in two dimensions where you have unit vectors i \bf{i} i and j \bf{j} j for the x - x\text- x - and y y y -axes respectively, the unit vector along the z z z -axis is denoted by k \bf{k} k . Vectors in 3D can be represented with column vectors or unit vector notation (i \bf{i} i , j \bf{j} j and k \bf{k} k ). Similar to vectors in 2D, you can work out the angle a vector makes with any positive axis.
Unit vectors The unit vectors along the x x x -, y y y - and z z z -axes are denoted as i \bf{i} i , j \bf{j} j and k \bf{k} k , respectively.
i = ( 1 0 0 ) \bf{i}=\begin{pmatrix}1\\0\\0\end{pmatrix} i = 1 0 0
j = ( 0 1 0 ) \bf{j}=\begin{pmatrix}0\\1\\0\end{pmatrix} j = 0 1 0
k = ( 0 0 1 ) \bf{k}=\begin{pmatrix}0\\0\\1\end{pmatrix} k = 0 0 1
For any vector in 3D:
p i + q j + r k = ( p q r ) \boxed{p{\bf i}+q{\bf j}+r{\bf k}= \begin{pmatrix}p\\q\\r\end{pmatrix}} p i + q j + r k = p q r
Example 1 Find the position vectors of A ( 5 , 4 , 2 ) A(5,4,2) A ( 5 , 4 , 2 ) and B ( 9 , 2 , 4 ) B(9,2,4) B ( 9 , 2 , 4 ) . Write the answer in component form. Find A B → \overrightarrow{AB} A B as a column vector.
The position vectors are:
O A → = 5 i + 4 j + 2 k ‾ , O B → = 9 i + 2 j + 4 k ‾ \overrightarrow{OA}=\underline{5{\bf i}+4{\bf j}+2{\bf k}}, \overrightarrow{OB}=\underline{9{\bf i}+2{\bf j}+4{\bf k}} O A = 5 i + 4 j + 2 k , OB = 9 i + 2 j + 4 k
A B → = O B → − O A → = ( 9 2 4 ) − ( 5 4 2 ) = ( 4 − 2 2 ) ‾ \begin{aligned}\overrightarrow{AB}&=\overrightarrow{OB}-\overrightarrow{OA}\\&=\begin{pmatrix}9\\2\\4\end{pmatrix}-\begin{pmatrix}5\\4\\2\end{pmatrix}=\underline{\begin{pmatrix}4\\-2\\2\end{pmatrix} } \end{aligned} A B = OB − O A = 9 2 4 − 5 4 2 = 4 − 2 2
Example 2 The vectors a \bf{a} a and b \bf{ b} b are given by a = ( 18 − 3 3 ) {\bf a}=\begin{pmatrix}18\\-3\\3\end{pmatrix} a = 18 − 3 3 and b = ( 1 5 3 ) {\bf b}=\begin{pmatrix}1\\5\\3\end{pmatrix} b = 1 5 3 . Find 1 3 a + b \frac13{\bf a}+\bf{b} 3 1 a + b .
1 3 a + b = 1 3 ( 18 − 3 3 ) + ( 1 5 3 ) = ( 6 − 1 1 ) + ( 1 5 3 ) = ( 7 4 4 ) ‾ \begin{aligned}\frac13{\bf a}+{\bf b}&=\frac13\begin{pmatrix}18\\-3\\3\end{pmatrix}+\begin{pmatrix}1\\5\\3\end{pmatrix}=\begin{pmatrix}6\\-1\\1\end{pmatrix}+\begin{pmatrix}1\\5\\3\end{pmatrix}=\underline{\begin{pmatrix}7\\4\\4\end{pmatrix}}\end{aligned} 3 1 a + b = 3 1 18 − 3 3 + 1 5 3 = 6 − 1 1 + 1 5 3 = 7 4 4
Example 3 Find the magnitude of a = i + 3 j − 2 k {\bf a}= {\bf i}+ 3 {\bf j} -2{\bf k} a = i + 3 j − 2 k , and hence find the unit vector in the direction of a {\bf a} a .
By Pythagoras' theorem:
∣ a ∣ = 1 2 + 3 2 + ( − 2 ) 2 = 1 + 9 + 4 = 14 ‾ |{\bf a}| = \sqrt{1^2+3^2+(-2)^2}=\sqrt{1+9+4}=\underline{\sqrt{14}} ∣ a ∣ = 1 2 + 3 2 + ( − 2 ) 2 = 1 + 9 + 4 = 14
For the unit vector in the direction of a {\bf a} a :
a ^ = a ∣ a ∣ = 1 14 ( i + 3 j − 2 k ) ‾ \hat{\bf a}=\frac{{\bf a}}{|{\bf a }|}=\underline{ \frac1{\sqrt{14}}({\bf i}+ 3 {\bf j} -2{\bf k})} a ^ = ∣ a ∣ a = 14 1 ( i + 3 j − 2 k )
Finding the angle You can find the angle between a given vector and any of the coordinate axes by using the appropriate right-angled triangle.
If vector a = x i + y j + z k {\bf a}=x{\bf i}+y{\bf j} +z{\bf k} a = x i + y j + z k and makes an angle θ x \theta_x θ x with the positive x x x -axis, then:
cos θ x = x ∣ a ∣ \boxed{\cos\theta_x=\frac{x}{|{\bf a}|}} cos θ x = ∣ a ∣ x
Note: This also applies for angles θ y \theta_y θ y and θ z \theta_z θ z .
Example 4 Find the angles that the vector a = 2 i − 1 j + 7 k {\bf a}=2{\bf i}-1{\bf j} +7{\bf k} a = 2 i − 1 j + 7 k makes with each of the positive coordinates axes to 1 d . p . 1\ d.p. 1 d . p .
First, find ∣ a ∣ |{\bf a}| ∣ a ∣ :
∣ a ∣ = 2 2 + ( − 1 ) 2 + 7 2 = 4 + 1 + 49 = 54 |{\bf a}| = \sqrt{2^2+(-1)^2+7^2}=\sqrt{4+1+49}=\sqrt{54} ∣ a ∣ = 2 2 + ( − 1 ) 2 + 7 2 = 4 + 1 + 49 = 54
Use the respective formula for each axis:
cos θ x = x ∣ a ∣ = 2 54 ⟹ θ x = 74.2 ° ‾ \cos\theta_x=\frac{x}{|{\bf a}|}=\frac{2}{\sqrt{54}}\implies \theta_x=\underline{74.2\degree} cos θ x = ∣ a ∣ x = 54 2 ⟹ θ x = 74.2°
cos θ y = y ∣ a ∣ = − 1 54 ⟹ θ y = 97.8 ° ‾ \cos\theta_y=\frac{y}{|{\bf a}|}=\frac{-1}{\sqrt{54}}\implies \theta_y=\underline{97.8\degree} cos θ y = ∣ a ∣ y = 54 − 1 ⟹ θ y = 97.8°
cos θ z = z ∣ a ∣ = 7 54 ⟹ θ z = 17.7 ° ‾ \cos\theta_z=\frac{z}{|{\bf a}|}=\frac{7}{\sqrt{54}}\implies \theta_z=\underline{17.7\degree} cos θ z = ∣ a ∣ z = 54 7 ⟹ θ z = 17.7°