Everything to learn better...

Home

Maths

Numerical methods

Newton-Raphson method

Newton-Raphson method

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Daniel

Summary

Newton-Raphson method

In a nutshell

The Newton-Raphson method is a way to quickly find a root. It uses differentiation and tangential lines to locate roots. The method is quick when it works, but runs into issues if the starting point x0x_0 is not chosen carefully.



Newton-Raphson diagram

The method uses tangent lines to find the root.  Below is the function f(x)=0.25x30.5x2x3f(x)=0.25 x^3-0.5 x^2-x-3.


Maths; Numerical methods; KS5 Year 13; Newton-Raphson method


To construct the diagram, you take an x0x_0​ value and find the point (x0,f(x0))(x_0,f(x_0)). You then create a tangent line to y=f(x)y=f(x) at the point (x0,f(x0))(x_0,f(x_0)). This line will have the slope f(x)f'(x). The point where this line intersects the xx-axis becomes x1x_1. You then take a tangent to y=f(x)y=f(x) at the point (x1,f(x1))(x_1,f(x_1)) and repeat until you find the root. Below is what the diagram should look like.

Maths; Numerical methods; KS5 Year 13; Newton-Raphson method



Newton-Raphson formula

The Newton-Raphson formula is xn+1=xnf(xn)f(xn)x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}. This formula will allow you to find subsequent xnx_n values as they become closer to the root.


Procedure

1.

Differentiate f(x)f(x) to find f(x)f'(x).​

2.

Choose a value to be x0.x_0.​​

3.

Use x0x_0 to find x1x_1 with the formula x1=x0f(x0)f(x0)x_1=x_0-\dfrac{f(x_0)}{f'(x_0)}​​

4.

Use x1x_1 to find x2x_2, and repeat until you find the root.​



Failures of the Newton-Raphson method

You have to be careful picking x0x_0 values for the Newton-Raphson method to work. If your chosen x0x_0 value is too close to a turning point on the curve, the slope of the tangent f(x)f'(x) will be close to zero. The subsequent x1x_1 value will be far away from the root.

Maths; Numerical methods; KS5 Year 13; Newton-Raphson method


Another issue arises if a value chosen for x0x_0, or if any value for xnx_n at all, is directly on the turning point. The method fails, as to complete f(xn)f'(x_n) would result in a division by zero. The tangent at a turning point will not intersect with the xx-axis and will not facilitate the finding of a root.




Example 1

Use the Newton-Raphson method on the function f(x)=1.5x3+2x28x4f(x)=1.5x^3+2x^2-8x-4 to find a root rounded to 3 d.p3\space d.p​. Take x0=5x_0=5 as your starting point.


First, find f(x)f'(x) by differentiation.


f(x)=1.5x3+2x28x4f(x)=(3)(1.5)x31+(2)(2)x21(1)(8)x11(0)(4)f(x)=4.5x2+4x8\begin{aligned}f(x)&=1.5x^3+2x^2-8x-4\\f'(x)&=(3)(1.5)x^{3-1}+(2)(2)x^{2-1}-(1)(8)x^{1-1}-(0)(4)\\f'(x)&=4.5x^2+4x-8\\\end{aligned}


Use the Newton-Raphson method to find the root.

xn+1=xnf(xn)f(xn)f(x)=1.5x3+2x28x4f(x)=4.5x2+4x8x0=5x1=5f(5)f(5)x1=51.5(5)3+2(5)28(5)44.5(5)2+4(5)8x1=3.4458x2=3.4458f(3.4458)f(3.4458)=2.5414x3=2.5414f(2.5414)f(2.5414)=2.1185x4=2.1185f(2.1185)f(2.1185)=2.0077x5=2.0077f(2.0077)f(2.0077)=2.0000x6=2f(2)f(2)=2\begin{aligned}x_{n+1}&=x_n-\dfrac{f(x_n)}{f'(x_n)}\\\\f(x)&=1.5x^3+2x^2-8x-4\\f'(x)&=4.5x^2+4x-8\\x_0&=5\\x_1&=5-\dfrac{f(5)}{f'(5)}\\\\x_1&=5-\dfrac{1.5(5)^3+2(5)^2-8(5)-4}{4.5(5)^2+4(5)-8}\\x_1&=3.4458\\x_2&=3.4458-\dfrac{f(3.4458)}{f'(3.4458)}=2.5414\\\\x_3&=2.5414-\dfrac{f(2.5414)}{f'(2.5414)}=2.1185\\\\x_4&=2.1185-\dfrac{f(2.1185)}{f'(2.1185)}=2.0077\\\\x_5&=2.0077-\dfrac{f(2.0077)}{f'(2.0077)}=2.0000\\\\x_6&=2-\dfrac{f(2)}{f'(2)}=2\\\\\end{aligned}


The root of f(x)f(x) is 2\underline{2}.


​​

Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

Why can't you choose your x_0 at the curve's turning point?

What is the formula of the Newton-Raphson method?

What is the Newton-Raphson method?

Beta

I'm Vulpy, your AI study buddy! Let's study together.