Everything to learn better...

Home

Maths

Integration II

Integrating f(ax + b)

Integrating f(ax + b)

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Bilal

Summary

Integrating f(ax+b)f(ax+b)​​

​​In a nutshell

It is possible to use the chain rule for differentiation to integrate functions of the form f(ax+b)f(ax+b), where aa and bb​ are constants.



Deriving the rule

Consider the function f(x)f(x)​, and its derivative f(x)f'(x). By definition:

f(x) dx=f(x)+C\int f'(x)\, dx = f(x)+C​​


Suppose you want to integrate f(ax+b)f'(ax+b). This can be done by considering the derivative of f(ax+b)f(ax+b).


Differentiating f(ax+b)f(ax+b) requires use of the chain rule:

Let y=f(ax+b)=f(u)y=f(ax+b)=f(u), where u(x)=ax+bu(x)=ax+b.


The chain rule is described by the formula:

dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times\dfrac{du}{dx}​​


y=f(ax+b)dydx=(f(ax+b))y=f(u)dydu=f(u)=f(ax+b)u=ax+bdudx=a\begin{aligned} y=f(ax+b) &\Rightarrow \dfrac{dy}{dx}=(f(ax+b))'\\ y=f(u)&\Rightarrow \dfrac{dy}{du}=f'(u)=f'(ax+b)\\u=ax+b &\Rightarrow \dfrac{du}{dx}=a \end{aligned}​​


Substitute these expressions into the formula:

(f(ax+b))=f(ax+b)×af(ax+b)=1a(f(ax+b))\begin{aligned}(f(ax+b))'&=f'(ax+b)\times a \\ f'(ax+b)&=\dfrac1a (f(ax+b))'\end{aligned}​​


Integrate both sides of this expression:

f(ax+b) dx=1a(f(ax+b)) dx=1a(f(ax+b)) dx\begin{aligned}\int f'(ax+b) \, dx =& \int \dfrac1a (f(ax+b))' \,dx\\=& \dfrac1a \int (f(ax+b))' \,dx\end{aligned}​​


This provides a formula to integrate functions that have an argument of ax+bax+b:


f(ax+b) dx=1af(ax+b)+C\boxed{\int f'(ax+b) \, dx = \dfrac1a f(ax+b)+C}​​


In other words, integrate the function normally and divide by the coefficient of xx.


Example 1

Compute the following integrals:

i) cos(2x1) dx\int \cos(2x-1)\,dx

ii) e1x dx\int e^{1-x} \, dx

iii) 01(512x)2 dx\int_0^1 (5-\dfrac{1}{2}x)^2\,dx


Part i):

Integrate the function "normally":

cos(x)\cos(x)integrates to sin(x)\sin(x).

So, cos(2x1)\cos(2x-1) should integrate to something similar to sin(2x1)\sin(2x-1).


Divide by the coefficient of xx, which in this case is 22.

So, cos(2x1)\cos(2x-1) integrates to sin(2x1)2\dfrac{\sin(2x-1)}{2}.


cos(2x1) dx=12sin(2x1)+C\int \cos(2x-1)\,dx=\underline{\dfrac12 \sin(2x-1)+C}​​


Part ii):

exe^xintegrates to exe^x.

So, e1xe^{1-x} should integrate to something similar to e1xe^{1-x}.


The coefficient of xx is 1-1, so divide by this.

e1xe^{1-x}integrates to e1x1\dfrac{e^{1-x}}{-1}.


e1x dx=e1x+C\int e^{1-x} \, dx=\underline{-e^{1-x}+C}​​


Part iii):

x2x^2integrates to 13x3\dfrac13 x^3.

So, (512x)2(5-\dfrac{1}{2}x)^2 should integrate to something similar to 13(512x)3\dfrac 13(5-\dfrac{1}{2}x)^3.


​        The coefficient of xx is 12-\frac12, so divide by this.


01(512x)2 dx=[13(512x)312]01=[23(512x)3]01=(23(512(1))3)(23(512(0))3)=(23(92)3)(23(5)3)=(2434)(2503)=27112\begin{aligned}\int_0^1 (5-\dfrac{1}{2}x)^2 \, dx &=\left[\dfrac{\dfrac13(5-\dfrac{1}{2}x)^3}{-\dfrac12}\right]_0^1 \\&= \left[-\dfrac23(5-\dfrac{1}{2}x)^3\right]_0^1 \\&=\left(-\dfrac23 (5-\dfrac12 (1))^3 \right) - \left(-\dfrac23 (5-\dfrac12 (0))^3 \right) \\&= \left(-\dfrac23 \left(\dfrac92\right)^3\right) - \left(- \dfrac23 (5)^3\right) \\&=\left( -\dfrac{243}{4}\right) - \left(-\dfrac{250}{3}\right)\\&=\dfrac{271}{12} \end{aligned}​​


01(512x)2 dx=27112\int_0^1 (5-\dfrac{1}{2}x)^2 \, dx=\underline{\dfrac{271}{12}}​​


Note: This only works when the argument of the function is a linear expression (ax+bax+b).




Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

Which rule for differentiation is used to find integrals of the form f(ax+b)?

How do you integrate functions of the form f(ax+b)?

Beta

I'm Vulpy, your AI study buddy! Let's study together.