Everything to learn better...

Home

Maths

Differentiation II

Implicit differentiation

Implicit differentiation

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Implicit differentiation

​​In a nutshell

If a function cannot easily be arranged such that you have it in the form y=f(x)y=f(x) or x=g(y)x=g(y), then you cannot differentiate explicitly, which is what you have been doing so far. Instead, you can differentiate the function as it is implicitly. ​



Explicit vs. implicit

A function of the form y=f(x)y=f(x) or x=g(y)x=g(y) is given explicitly. On one side is a yy or an xx, and on the other side is a function in terms of the other variable. A function in the form f(x,y)f(x,y) is a function in terms of both xx​ and yy. The equation 0=f(x,y)0=f(x,y) is given implicitly. 


Example 1

The following functions are given implicitly.

4xy+x2y3=6sin(xy)=0xy26xy=9x4xy+x^2-y^3=6\\\sin(x-y)=0\\\frac{x}{y^2}-6xy=-9^x​​



Using the chain rule

Recall that when you denote differentiation, you use ddx\frac{\text d}{\text dx}​, meaning to differentiate with respect to xx​. It is commonly seem as dydx\frac{\text dy}{\text dx}​. meaning you are differentiating yy​ with respect to xx​.


Suppose you have a function of yy, f(y)f(y), but since it is part of a larger, implicit function, you need to differentiate with respect to xx, you will use the chain rule. In this case, you will use it in this form:

ddxdydx×ddy\frac{\text d}{\text dx}\rightarrow\frac{\text dy}{\text dx}\times\frac{\text d}{\text dy}​​


In other words, you have converted the differentiation operation into one in terms of yy. All you have to do is to multiply by dydx\frac{\text dy}{\text dx}. The general form when differentiating a function f(y)f(y) with respect to xx is

ddx(f(y))=f(y)dydx\boxed{\frac{\text d}{\text dx}(f(y))=f'(y)\frac{\text dy}{\text dx}}​​


Example 2

Differentiate the following with respect to xx:

5y2+7y=4x35y^2+7y=4x^3​​


Apply ddx\frac{\text d}{\text dx} to both sides:

ddx(5y2+7y)=ddx(4x3)\frac{\text d}{\text dx}(5y^2+7y)=\frac{\text d}{\text dx}(4x^3)​​


The right-hand side can be done as expected, since it is in terms of xx:

ddx(5y2+7y)=12x2\frac{\text d}{\text dx}(5y^2+7y)=12x^2​​


The left-hand side however requires the chain rule:

dydx×ddy(5y2+7y)=12x2dydx(10y+7)=12x2\begin{aligned}\frac{\text dy}{\text dx}\times\frac{\text d}{\text dy}(5y^2+7y)&=12x^2\\\frac{\text dy}{\text dx}(10y+7)&=12x^2\end{aligned}​​


Rearranging this to obtain the equation for the gradient gives:

dydx=12x210y+7\underline{\frac{\text dy}{\text dx}=\frac{12x^2}{10y+7}}​​


Note: When implicitly differentiating, it is common that your expression for dydx\frac{\text dy}{\text dx} will be a function of both xx and yy.


Example 3

Differentiate the following with respect to xx:

0=2y+xy30=2y+xy^3​​


Apply ddx\frac{\text d}{\text dx} to both sides:

ddx(0)=ddx(2y+xy3)0=ddx(2y+xy3)\begin{aligned}\frac{\text d}{\text dx}(0)&=\frac{\text d}{\text dx}(2y+xy^3)\\0&=\frac{\text d}{\text dx}(2y+xy^3)\end{aligned}​​


To differentiate the right-hand side, approach term by term:

0=ddx(2y)+ddx(xy3)=dydxddy(2y)+ddx(xy3)=2dydx+ddx(xy3)\begin{aligned}0&=\frac{\text d}{\text dx}(2y)+\frac{\text d}{\text dx}(xy^3)\\&=\frac{\text dy}{\text dx}\frac{\text d}{\text dy}(2y)+\frac{\text d}{\text dx}(xy^3)\\&=2\frac{\text dy}{\text dx}+\frac{\text d}{\text dx}(xy^3)\end{aligned}​​


To differentiate the second term, you will use the product rule:

0=2dydx+ddx(xy3)=2dydx+(ddx(x))y3+x(ddx(y3))=2dydx+(1)y3+x(dydxddy(y3))=2dydx+y3+x(dydx(3y2))=2dydx+y3+3xy2dydx\begin{aligned}0&=2\frac{\text dy}{\text dx}+\frac{\text d}{\text dx}(xy^3)\\&=2\frac{\text dy}{\text dx}+\left(\frac{\text d}{\text dx}(x)\right)y^3+x\left(\frac{\text d}{\text dx}(y^3)\right)\\&=2\frac{\text dy}{\text dx}+(1)y^3+x\left(\frac{\text dy}{\text dx}\frac{\text d}{\text dy}(y^3)\right)\\&=2\frac{\text dy}{\text dx}+y^3+x\left(\frac{\text dy}{\text dx}(3y^2)\right)\\&=2\frac{\text dy}{\text dx}+y^3+3xy^2\frac{\text dy}{\text dx}\end{aligned}​​


You can now rearrange this to give an equation for dydx\frac{\text dy}{\text dx}:

0=2dydx+y3+3xy2dydx=dydx(2+3xy2)+y3dydx=y32+3xy2\begin{aligned}0&=2\frac{\text dy}{\text dx}+y^3+3xy^2\frac{\text dy}{\text dx}\\&=\frac{\text dy}{\text dx}(2+3xy^2)+y^3\\\frac{\text dy}{\text dx}&=\underline{-\frac{y^3}{2+3xy^2}}\end{aligned}​​



Common derivatives

Below are some frequently occuring derivatives. You may want to commit them to memory.

ddx(yn)=nyn1dydxddx(xy)=xdydx+y\begin{aligned}\frac{\text d}{\text dx}(y^n)&=ny^{n-1}\frac{\text dy}{\text dx}\\\frac{\text d}{\text dx}(xy)&=x\frac{\text dy}{\text dx}+y\end{aligned}​​


where nn is a constant.



Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

How do you differentiate implicitly?

What is an implicit expression?

What is an explicit function?

Beta

I'm Vulpy, your AI study buddy! Let's study together.