Everything to learn better...

Home

Maths

Differentiation II

Parametric differentiation

Parametric differentiation

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Parametric differentiation

​​In a nutshell

Sometimes functions are defined parametrically, meaning that both yy and xx are given in terms of some parameter, say, tt. While it may be possible to re-express a given function in terms of yy and xx only, you can use the chain rule to find the gradient of the function without doing this. 



Using the chain rule

If your function is given parametrically, where the parameter is tt, you will have two functions x(t)x(t) and y(t)y(t). To find the gradient of this function, you seek dydx\frac{\text dy}{\text dx}. Currently, you can find dxdt\frac{\text dx}{\text dt} and dydt\frac{\text dy}{\text dt} by differentiating the parametric equations with respect to tt. Using the chain rule, you have

dydx=dydtdxdt\boxed{\frac{\text dy}{\text dx}=\dfrac{\frac{\text dy}{\text dt}}{\frac{\text dx}{\text dt}}}​​


You can justify this to yourself by considering the following:

dydx×dxdt=dydt\frac{\text dy}{\text dx}\times\frac{\text dx}{\text dt}=\frac{\text dy}{\text dt}​​


This rearranges to the formula above. 


Example 1

Find the gradient of the curve given by the parametric equations

x=2t+1y=4t2+10t+4\begin{aligned}x&=2t+1\\y&=4t^2+10t+4\end{aligned} 


Start by differentiating each of these functions with respect to tt:

dxdt=2dydt=8t+10\begin{aligned}\frac{\text dx}{\text dt}&=2\\\frac{\text dy}{\text dt}&=8t+10\end{aligned}​​


Thus, by the chain rule:

dydx=8t+102=4t+5\begin{aligned}\frac{\text dy}{\text dx}&=\frac{8t+10}{2}\\&=4t+5\end{aligned}​​


Finally, you express this in terms of xx using the original parametric equation x=2t+1x=2t+1. This implies that t=x12t=\frac{x-1}{2} and hence:

dydx=4(x12)+5=2x+3\begin{aligned}\frac{\text dy}{\text dx}&=4\left(\frac{x-1}{2}\right)+5\\&=\underline{2x+3}\end{aligned}​​


Note: It is possible to express this function non-parametrically: y=x2+3xy=x^2+3x. See that differentiating this gives the same as concluded above.


Example 2

Find the gradient at the point where x=2x=2 of the curve given by the parametric equations 

x=3cos(θ)y=sin(θ)\begin{aligned}x&=3\cos(\theta)\\y&=\sin(\theta)\end{aligned}​​


Differentiate each of these with respect to θ\theta:​

dxdθ=3sin(θ)dydθ=cos(θ)\begin{aligned}\frac{\text dx}{\text d\theta}&=-3\sin(\theta)\\\frac{\text dy}{\text d\theta}&=\cos(\theta)\end{aligned}​​


Therefore, the chain rule says:

dydx=cos(θ)3sin(θ)\begin{aligned}\frac{\text dy}{\text dx}&=\frac{\cos(\theta)}{-3\sin(\theta)}\end{aligned}​​


Now use the parametric equations to express this in terms of xx.


You already have that cos(θ)=x3\cos(\theta)=\frac{x}3. But you can also use this to find an expression for sin(θ)\sin(\theta):

cos(θ)=x3cos2(θ)=x291cos2(θ)=1x29=9x29sin2(θ)=9x29sin(θ)=9x23\begin{aligned}\cos(\theta)&=\frac{x}3\\\cos^2(\theta)&=\frac{x^2}{9}\\1-\cos^2(\theta)&=1-\frac{x^2}9\\&=\frac{9-x^2}9\\\sin^2(\theta)&=\frac{9-x^2}9\\\sin(\theta)&=\frac{\sqrt{9-x^2}}3\end{aligned}​​


So

dydx=x339x23=x39x2\begin{aligned}\frac{\text dy}{\text dx}&=\frac{\frac{x}3}{-3\frac{\sqrt{9-x^2}}3}\\&={-\frac{x}{3\sqrt{9-x^2}}}\end{aligned}​​


When x=2x=2, the gradient is 

dydx=x39x2=23922=215150.298\begin{aligned}\frac{\text dy}{\text dx}&=-\frac{x}{3\sqrt{9-x^2}}\\&=-\frac{2}{3\sqrt{9-2^2}}\\&=\underline{-\frac{2\sqrt{15}}{15}}\\&\approx\underline{-0.298}\end{aligned}​​

Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

How do you differentiate parametrically?

What is a parameter?

Beta

I'm Vulpy, your AI study buddy! Let's study together.