Everything to learn better...

Double angle formulae

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Double angle formulae

In a nutshell

The addition formulae allow you to evaluate trigonometric functions at α+β\alpha + \beta​, assuming you have their values evaluated at both α\alpha​ and β\beta​. The special cases of these formulae where β=α\beta = \alpha are the double angle formulae.



Double angle identities

The addition formulae are:


sin(α+β)sin(α)cos(β)+cos(α)sin(β)cos(α+β)cos(α)cos(β)sin(α)sin(β)tan(α+β)tan(α)+tan(β)1tan(α)tan(β)\begin{aligned}\sin(\alpha + \beta) &\equiv \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)\\\cos(\alpha + \beta) &\equiv \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)\\\tan(\alpha + \beta) &\equiv \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}\end{aligned}​​


In each of these, let β=α\beta = \alpha to derive identities for sin(2α)\sin(2\alpha)​, cos(2α)\cos(2\alpha)​ and tan(2α)\tan(2\alpha)​:


sin(α+α)sin(α)cos(α)+cos(α)sin(α)sin(2α)2sin(α)cos(α)\sin(\alpha + \alpha) \equiv \sin(\alpha)\cos(\alpha) + \cos(\alpha)\sin(\alpha)\\\boxed{\sin(2\alpha) \equiv 2\sin(\alpha)\cos(\alpha)} \quad\quad\quad\quad\quad\quad\quad​​


cos(α+α)cos(α)cos(α)sin(α)sin(α)cos(2α)cos2(α)sin2(α)cos(2α)2cos2(α)1usingsin2(α)=1cos2(α)cos(2α)12sin2(α)usingcos2(α)=1sin2(α)\cos(\alpha + \alpha) \equiv \cos(\alpha)\cos(\alpha) - \sin(\alpha)\sin(\alpha) \quad \quad \quad \quad \quad \quad\\\boxed{\cos(2\alpha) \equiv \cos^2(\alpha) - \sin^2(\alpha)} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\\boxed{\cos(2\alpha) \equiv 2\cos^2(\alpha) - 1} \quad using \quad \sin^2(\alpha)=1-\cos^2(\alpha) \\\boxed{\cos(2\alpha) \equiv 1 -2 \sin^2(\alpha)} \quad using \quad \cos^2(\alpha)=1-\sin^2(\alpha) \\​​


tan(α+α)tan(α)+tan(α)1tan(α)tan(α)tan(2α)2tan(α)1tan2(α)\tan(\alpha + \alpha) \equiv \dfrac{\tan(\alpha) + \tan(\alpha)}{1 - \tan(\alpha)\tan(\alpha)}\\\boxed{\tan(2\alpha) \equiv \dfrac{2\tan(\alpha)}{1 - \tan^2(\alpha)}} \quad\quad\quad\quad​​


Example 1

Compute the exact value of (sin(π8)+cos(π8))2\left(\sin\left(\dfrac{\pi}{8}\right)+ \cos\left(\dfrac{\pi}{8}\right)\right)^2.


Expand the brackets, and use the identity cos2(α)+sin2(α)1\cos^2(\alpha) + \sin^2(\alpha) \equiv 1 and the double angle identity for sin(2α)\sin(2\alpha)​:


(sin(π8)+cos(π8))2=sin2(π8)+cos2(π8)+2sin(π8)cos(π8)=1+sin(2×π8)=1+sin(π4)=1+22=2+22\begin{aligned}\left(\sin\left(\dfrac{\pi}{8}\right) + \cos\left(\dfrac{\pi}{8}\right)\right)^2 &= \sin^2\left(\dfrac{\pi}{8}\right) + \cos^2\left(\dfrac{\pi}{8}\right) + 2\sin\left(\dfrac{\pi}{8}\right)\cos\left(\dfrac{\pi}{8}\right)\\&= 1 + \sin\left(2 \times\dfrac{\pi}{8}\right)\\&= 1 + \sin\left(\dfrac{\pi}{4}\right)\\&= 1 + \dfrac{\sqrt{2}}{2}\\&= \dfrac{2 + \sqrt{2}}{2}\end{aligned}​​



Therefore, the exact value of (sin(π8)+cos(π8))2\left(\sin\left(\dfrac{\pi}{8}\right) + \cos\left(\dfrac{\pi}{8}\right)\right)^2 is 2+22\underline{\dfrac{2 + \sqrt{2}}{2}}.



Example 2

Show that sin(4α)4sin(α)cos3(α)4sin3(α)cos(α)\sin(4\alpha) \equiv 4\sin(\alpha)\cos^3(\alpha) - 4\sin^3(\alpha)\cos(\alpha).


You have that 4α=2×2α4\alpha = 2 \times 2\alpha, so by the double angle formula for sin\sin​:


sin(4α)2sin(2α)cos(2α)\sin(4\alpha) \equiv 2\sin(2\alpha)\cos(2\alpha)​​


Apply both the double angle formulae for sin\sin​ and cos\cos​:


sin(4α)2sin(2α)cos(2α)2(2sin(α)cos(α))(cos2(α)sin2(α))4sin(α)cos3(α)4sin3(α)cos(α)\begin{aligned}\sin(4\alpha) &\equiv 2\sin(2\alpha)\cos(2\alpha)\\&\equiv 2(2\sin(\alpha)\cos(\alpha))(\cos^2(\alpha) - \sin^2(\alpha))\\&\equiv 4\sin(\alpha)\cos^3(\alpha) - 4\sin^3(\alpha)\cos(\alpha)\end{aligned}​​


Therefore, sin(4α)4sin(α)cos3(α)4sin3(α)cos(α)\underline{\sin(4\alpha) \equiv 4\sin(\alpha)\cos^3(\alpha) - 4\sin^3(\alpha)\cos(\alpha)}.



Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the formula for sin(2a)?

What is the formula for cos(2a)?

What is the formula for tan(2a)?

Beta

I'm Vulpy, your AI study buddy! Let's study together.