Everything to learn better...

Home

Maths

Trigonometry and modelling

Using the angle addition formulae

Using the angle addition formulae

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Using the angle addition formulae

​​In a nutshell

The addition formulae for trigonometric functions, and the exact values of trigonometric functions evaluated at certain angles, can be used to compute the exact values of trigonometric functions evaluated at new angles.



Addition formulae

The addition formulae for the trigonometric functions are:


sin(α+β)sin(α)cos(β)+cos(α)sin(β)sin(αβ)sin(α)cos(β)cos(α)sin(β)cos(α+β)cos(α)cos(β)sin(α)sin(β)cos(αβ)cos(α)cos(β)+sin(α)sin(β)tan(α+β)tan(α)+tan(β)1tan(α)tan(β)tan(αβ)tan(α)tan(β)1+tan(α)tan(β)\begin{aligned}\sin(\alpha + \beta) &\equiv \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)\\\sin(\alpha - \beta) &\equiv \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)\\\\\cos(\alpha + \beta) &\equiv \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)\\\cos(\alpha - \beta) &\equiv \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)\\\\\tan(\alpha + \beta) &\equiv \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}\\\tan(\alpha - \beta) &\equiv \dfrac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}\end{aligned}​​


Given the exact values of trigonometric functions evaluated at angles α\alpha and β\beta​, you can use these identities to compute the exact value of trigonometric functions evaluated at α+β\alpha + \beta​ or αβ\alpha - \beta​.



Example 1

Compute the exact value of tan(7π12)\tan\left(\dfrac{7\pi}{12}\right).


You have that 7π12=π4+π3\dfrac{7\pi}{12} = \dfrac{\pi}{4} + \dfrac{\pi}{3}.


tan(π4)=1\tan\left(\dfrac{\pi}{4}\right) = 1, and tan(π3)=3\tan\left(\dfrac{\pi}{3}\right) = \sqrt{3}. Use the addition formula for tan\tan:


tan(7π12)=tan(π4+π3)=tan(π4)+tan(π3)1tan(π4)tan(π3)=1+313=(1+3)2(13)(1+3)=4+232=23\begin{aligned}\tan\left(\dfrac{7\pi}{12}\right) &= \tan\left(\dfrac{\pi}{4} + \dfrac{\pi}{3}\right)\\&= \dfrac{\tan\left(\dfrac{\pi}{4}\right) + \tan\left(\dfrac{\pi}{3}\right)}{1 - \tan\left(\dfrac{\pi}{4}\right)\tan\left(\dfrac{\pi}{3}\right)}\\&= \dfrac{1 + \sqrt{3}}{1 - \sqrt{3}}\\&= \dfrac{(1 + \sqrt{3})^2}{(1 - \sqrt{3})(1 + \sqrt{3})}\\&= \dfrac{4 + 2\sqrt{3}}{-2}\\&= - 2 - \sqrt{3}\end{aligned}​​


Therefore, the exact value of tan(7π12)\tan\left(\dfrac{7\pi}{12}\right) is 23\underline{-2 - \sqrt{3}}.



Example 2

Given that cos(α)=2029\cos(\alpha) = \dfrac{20}{29}, with α\alpha acute, and sin(β)=2425\sin(\beta) = \dfrac{24}{25}, with β\beta obtuse, compute the exact value of sin(α+β)\sin(\alpha + \beta).


If cos(α)=2029\cos(\alpha) = \dfrac{20}{29}, then sin(α)=±1cos2(α)=±2129\sin(\alpha) = \pm \sqrt{1- \cos^2(\alpha)} = \pm\dfrac{21}{29}.


However, α\alpha is acute, therefore sin(α)=2129\sin(\alpha) = \dfrac{21}{29}.


If sin(β)=2425\sin(\beta) = \dfrac{24}{25}, then cos(β)=±1sin2(β)=±725\cos(\beta) = \pm\sqrt{1 - \sin^2(\beta)} = \pm \dfrac{7}{25}.


However, β\beta is obtuse, therefore cos(β)=725\cos(\beta) = -\dfrac{7}{25}.


Put these together via the addition formula for sin\sin:


sin(α+β)=sin(α)cos(β)+cos(α)sin(β)=(2129)(725)+(2029)(2425)=333725\begin{aligned}\sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)\\&= \left(\dfrac{21}{29}\right)\left(-\dfrac{7}{25}\right) + \left(\dfrac{20}{29}\right)\left(\dfrac{24}{25}\right)\\&= \dfrac{333}{725}\end{aligned}​​


Therefore, the exact value of sin(α+β)\sin(\alpha + \beta) is 333725\underline{\dfrac{333}{725}}.


Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What can I use the addition formulae for trigonometric functions for?

How can I compute trigonometric functions evaluated at sums of angles?

What is the formula for tan(a+b)?

Beta

I'm Vulpy, your AI study buddy! Let's study together.