Everything to learn better...

Addition formulae

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Addition formulae

​​In a nutshell

Expressions of the form sin(α+β)\sin(\alpha + \beta)​, cos(α+β)\cos(\alpha + \beta)​, or tan(α+β)\tan(\alpha + \beta) can be expressed in terms of sin(α)\sin(\alpha), sin(β)\sin(\beta)​, cos(α)\cos(\alpha)​, cos(β)\cos(\beta)​, tan(α)\tan(\alpha)​ and tan(β)\tan(\beta)​.



Addition identities

The following diagram can be used to derive the identities for sin(α+β)\sin(\alpha + \beta)​ and cos(α+β)\cos(\alpha + \beta)​ in terms of sin(α)\sin(\alpha)​, sin(β)\sin(\beta)​, cos(α)\cos(\alpha)​ and cos(β)\cos(\beta)​.

Maths; Trigonometry and modelling; KS5 Year 13; Addition formulae


Observe that DAE=ADF\angle DAE = \angle ADF, and therefore CDF=90°ADF\angle CDF = 90\degree - \angle ADF. It follows that DCF=DAE=α\angle DCF = \angle DAE = \alpha​.




You have that ACDACD is a right angled triangle with a hypotenuse of length 11​, and CAD=β\angle CAD = \beta​.  Therefore the lengths AD=cos(β)AD = \cos(\beta), and CD=sin(β)CD = \sin(\beta)​.


The equalities AE=AB+BEAE = AB + BE​ and BC=BF+CFBC = BF + CF hold. Moreover, BE=DFBE = DF​ and BF=DEBF = DE​.


You have that ABCABC is a right angled triangle with a hypotenuse of length 11​, and BAC=α+β\angle BAC = \alpha + \beta. Therefore the lengths AB=cos(α+β)AB = \cos(\alpha + \beta)​, and BC=sin(α+β)BC = \sin(\alpha + \beta)​.


You have that ADEADE​ is a right angled triangle with a hypotenuse of length cos(β)\cos(\beta), and DAE=α\angle DAE = \alpha​. Therefore the lengths AE=cos(β)cos(α)AE = \cos(\beta)\cos(\alpha)​, and DE=cos(β)sin(α)DE = \cos(\beta)\sin(\alpha)​.


You have that CDFCDF​ is a right angled triangle with a hypotenuse of length sin(β)\sin(\beta), and DCF=α\angle DCF = \alpha​. Therefore the lengths CF=sin(β)cos(α)CF = \sin(\beta)\cos(\alpha), and DF=sin(β)sin(α)DF = \sin(\beta)\sin(\alpha)​.


Putting these together, you have that cos(α+β)+sin(β)sin(α)cos(β)cos(α)\cos(\alpha + \beta) + \sin(\beta)\sin(\alpha) \equiv \cos(\beta)\cos(\alpha)​, and sin(α+β)cos(β)sin(α)+sin(β)cos(α)\sin(\alpha + \beta) \equiv \cos(\beta)\sin(\alpha) + \sin(\beta)\cos(\alpha)​.


Rearranging these, you get the following identities:


cos(α+β)cos(α)cos(β)sin(α)sin(β)\boxed{\cos(\alpha + \beta) \equiv \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)}​​

sin(α+β)sin(α)cos(β)+cos(α)sin(β)\boxed{\sin(\alpha + \beta) \equiv \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)}​​


Substitute these into the identity tan(α+β)sin(α+β)cos(α+β)\tan(\alpha + \beta) \equiv \dfrac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}, and divide the numerator and denominator by cos(α)cos(β)\cos(\alpha)\cos(\beta)​:


tan(α+β)sin(α+β)cos(α+β)sin(α)cos(β)+cos(α)sin(β)cos(α)cos(β)sin(α)sin(β)(sin(α)cos(β)cos(α)cos(β))+(cos(α)sin(β)cos(α)cos(β))(cos(α)cos(β)cos(α)cos(β))(sin(α)sin(β)cos(α)cos(β))tan(α)+tan(β)1tan(α)tan(β)\begin{aligned}\tan(\alpha + \beta) &\equiv \dfrac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}\\& \equiv \dfrac{\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)}\\&\equiv \dfrac{\left(\dfrac{\sin(\alpha)\cos(\beta)}{\cos(\alpha)\cos(\beta)}\right) + \left(\dfrac{\cos(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}\right)}{\left(\dfrac{\cos(\alpha)\cos(\beta)}{\cos(\alpha)\cos(\beta)}\right) - \left(\dfrac{\sin(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}\right)}\\&\equiv \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}\end{aligned}​​


Therefore, you get the following addition identity:


tan(α+β)tan(α)+tan(β)1tan(α)tan(β)\boxed{\tan(\alpha + \beta) \equiv \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}}​​


Difference identitites

Using the facts that sin(α)=sin(α)\sin(-\alpha) = -\sin(\alpha)​, cos(α)=cos(α)\cos(-\alpha) = \cos(\alpha)​, and tan(α)=tan(α)\tan(-\alpha) = -\tan(\alpha)​, you can deduce the following identities:


cos(αβ)cos(α)cos(β)sin(α)(sin(β)cos(αβ)cos(α)cos(β)+sin(α)sin(β)\cos(\alpha - \beta) \equiv \cos(\alpha)\cos(-\beta) - \sin(\alpha)(\sin(-\beta)\\\boxed{\cos(\alpha - \beta) \equiv \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)}​​


sin(αβ)sin(α)cos(β)+cos(α)sin(β)sin(αβ)sin(α)cos(β)cos(α)sin(β)\sin(\alpha - \beta) \equiv \sin(\alpha)\cos(-\beta) + \cos(\alpha)\sin(-\beta)\\\boxed{\sin(\alpha - \beta) \equiv \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)}​​


tan(αβ)tan(α)+tan(β)1tan(α)tan(β)tan(αβ)tan(α)tan(β)1+tan(α)tan(β)\tan(\alpha - \beta) \equiv \dfrac{\tan(\alpha) + \tan(-\beta)}{1 - \tan(\alpha)\tan(-\beta)}\\\boxed{\tan(\alpha - \beta) \equiv \dfrac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}}​​



Example 1

Given that cos(α)=35\cos(\alpha) = \dfrac35and cos(β)=513\cos(\beta) = \dfrac{5}{13}​, find all possible values of cos(α+β)\cos(\alpha + \beta)​.


cos(α)=35\cos(\alpha) = \dfrac35​ implies sin(α)=±1cos2(α)=±1925=±45\sin(\alpha) = \pm \sqrt{1 - \cos^2(\alpha)} = \pm \sqrt{1 - \dfrac{9}{25}}= \pm \dfrac45​.


cos(β)=513\cos(\beta) = \dfrac{5}{13} implies sin(β)=±1cos2(β)=±125169=±1213\sin(\beta) = \pm\sqrt{1- \cos^2(\beta)} = \pm\sqrt{1 - \dfrac{25}{169}} = \pm\dfrac{12}{13}.


Using the identity cos(α+β)cos(α)cos(β)sin(α)sin(β)\cos(\alpha + \beta) \equiv \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta), you have:


cos(α+β)=(35)(513)±(45)(1213)=6365,3365\begin{aligned}\cos(\alpha + \beta) &= \left(\dfrac35\right)\left(\dfrac{5}{13}\right) \pm \left(\dfrac45\right)\left(\dfrac{12}{13}\right)\\&=\dfrac{63}{65}, -\dfrac{33}{65}\end{aligned}​​


Therefore, the possible values of cos(α+β)\cos(\alpha + \beta) are 6365\underline{\dfrac{63}{65}} and 3365\underline{-\dfrac{33}{65}}.

Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the formula for sin(a+b)?

What is the formula for cos(a+b)?

What is the formula for cos(a-b)?

Beta

I'm Vulpy, your AI study buddy! Let's study together.