Geometric series

Select Lesson

Exam Board

Select an option

Explainer Video

Tutor: Labib

Summary

Geometric series

​​In a nutshell

An geometric series finds the sum of a given number of terms in an geometric sequence, a sequence whose terms are separated by a common ratio. 



Calculating the sum of a sequence

To find the sum of a given number of terms of an geometric sequence, use a formula rather than manually adding up the terms. The sum SnS_n is given using the first term, aa, the common ratio, rr, and the nthn^{th} term.​

Sn=a(1rn)1rorSn=a(rn1)r1\boxed {S_n = \dfrac {a(1-r^n)}{1-r} \quad or \quad S_n = \dfrac {a(r^n-1)}{r-1}}​​


Note: Either formula can be used to find the sum but the formula on the left is easier when r<1r<1 and the right when r>1r>1.


Deriving the formula

The terms in a finite geometric sequence are as follows:

a,ar1,ar2,...,arn2,arn1a, ar^1 ,ar^2,... , ar^{n-2}, ar^{n-1}​​


This means the sum of a finite geometric sequence is equal to: 

Sn=a+ar1+ar2+...+arn2+arn1S_n=a+ar^1 +ar^2+...+ ar^{n-2}+ ar^{n-1}​​


Multiplying the series by rr will give: 

rSn=r[a+ar1+...+arn2+arn1]rSn=[ar+ar2+...+arn1+arn]\begin{aligned} rS_n &=&r &[a+ar^1 +...+ ar^{n-2}+ ar^{n-1}] \\ rS_n &=& &[ar+ar^2 +...+ ar^{n-1}+ ar^{n}] \end{aligned}​​

Subtract this from SnS_n:

SnrSn=[a+ar1+...+arn2+arn1][ar+ar2+...+arn1+arn]S_n - rS_n = [a+ar^1 +...+ ar^{n-2}+ ar^{n-1}]- [ar+ar^2 +...+ ar^{n-1}+ ar^{n}]​​

Sn(1r)=a+[ar1ar1]+...+[arn2arn2]+[arn1arn1]arnS_n(1-r ) = a+[ar^1-ar^1] +...+ [ar^{n-2}-ar^{n-2}]+ [ar^{n-1}-ar^{n-1}]- ar^{n}​​

Sn(1r)=aarnS_n(1-r ) = a- ar^{n}


Sn=a(1rn)1r\boxed{S_n= \dfrac{a(1-r^{n})}{1-r}}


Multiplying the top and bottom of the fraction by 1-1 which will maintain equivalence to SnS_n:

Sn=a(1rn)1r×11S_n= \dfrac{a(1-r^{n})}{1-r} \times \dfrac{-1}{-1}


Sn=a(rn1)r1\boxed{S_n= \dfrac{a(r^{n}-1)}{r-1}}​​


Example 1

Find the sum of the first 1212 terms of the geometric sequence with a first term of, 77, and a common ratio of 0.90.9


Identify the formula to use:

Sn=a(1rn)1rS_n = \dfrac{a(1-r^n)}{1-r} ​​


Substitute values to find the sum: 

S12=7(10.912)10.9S_{12} = \dfrac{7(1-0.9^{12})}{1-0.9} ​​

S12=50.23 (2 d.p.)\underline{S_{12} = 50.23\ (2 \ d.p.)}​​


Example 2

How many terms are needed for the sum of a geometric series in the form 2+4+8+16+...2+4+8+16 +... to exceed 10001000?


Identify the common ratio and first term:

r=42=2a=2r=\dfrac 42 = 2 \\ a = 2​​


Substitute the given values and solve:

1000=2(2n1)211000 = \dfrac{2(2^n-1)}{2- 1}​​

500=2n1500= {2^n-1}​​

501=2n501 = 2^n

ln(501)=nln(2)\ln (501) = n \ln(2)​​

n=ln(501)ln(2)=8.968666n = \dfrac{\ln(501)}{\ln(2)} = 8.968666


Round up since it is the sum which exceeds 10001000:

n=9\underline{n = 9} ​​



Read more

Learn with Basics

Length:
Sequences

Unit 1

Sequences

Sequences revision

Unit 2

Sequences revision

Jump Ahead

Geometric series

Unit 3

Geometric series

Final Test

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the formula for an geometric series?

What is an geometric series based on?

What is an geometric series?

Beta