Everything to learn better...

Home

Maths

Binomial expansion II

Binomial expansion of compound expressions

Binomial expansion of compound expressions

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Alice

Summary

​Binomial expansion of compound expressions

​​In a nutshell

The binomial expansion formula allows you to expand expressions of the form (a+bx)n(a + bx)^n for any real constants aa​, bb​ and nn​. You can use this to compute the expansions of expressions which can be expressed as the product or sum of terms of the form (a+bx)n(a + bx)^n.



Sums of binomial expansions

If you know the binomial expansions of (a+bx)n(a + bx)^n​ and (c+dx)m(c + dx)^m​, then the expansion of (a+bx)n+(c+dx)m(a + bx)^n + (c+dx)^m​ is the sum of their respective expansions. In other words, the coefficient of xkx^k​ in the expansion of (a+bx)n+(c+dx)m(a+bx)^n + (c+dx)^m​ is the sum of the coefficients of xkx^k​ in the expansions of (a+bx)n(a+bx)^n​ and (c+dx)m(c+dx)^m.


The range of values of xx for which this expansion will hold is the interval for which both the expansions of (a+bx)n(a+bx)^n​ and (c+dx)m(c+dx)^m​ hold, so if abcd\left|\dfrac{a}{b}\right| \le \left|\dfrac{c}{d}\right|​ then this is x<ab|x| < \left|\dfrac{a}{b}\right|​.

The same holds when adding more than two terms of the form (a+bx)n(a+bx)^n​ together, and the range of values for which the expansion of the sum will hold is the range of values for which the expansion holds for all of the terms being summed simultaneously.



Example 1

Find the terms up to the x2x^2​ term in the expansion of 3x2x2+x1\dfrac{3x}{2x^2 + x - 1}, and the range of values of xx for which the expansion holds.


Factorise the quadratic in the denominator to get that 3x2x2+x1=3x(2x1)(x+1)\dfrac{3x}{2x^2 + x - 1} = \dfrac{3x}{(2x-1)(x+1)}.


Use partial fractions to find values of AA and BB such that 3x(2x1)(x+1)=A2x1+Bx+1\dfrac{3x}{(2x-1)(x+1)} = \dfrac{A}{2x-1} + \dfrac{B}{x+1}.


Multiply by the denominator to obtain

3x=A(x+1)+B(2x1)3x = A(x+1) + B(2x-1)​​


Equate coefficients and solve for AA and BB

3x=Ax+A+2BxB3=A+2B0=ABB=A3=3AA=1B=1\begin{aligned}3x &= Ax + A + 2Bx - B\\3 &= A + 2B\\0 &= A - B\\B &= A\\3 &= 3A\\A &= 1\\B &= 1\\\end{aligned}​​


Therefore 3x2x2+x1=12x1+1x+1\dfrac{3x}{2x^2 + x - 1} = \dfrac{1}{2x-1} + \dfrac{1}{x+1}.


The expansion of 12x1=(12x)1\dfrac{1}{2x-1} = -(1-2x)^{-1} is:


(12x)1=1[1+(1)(2x)+(1)(2)2!(2x)2+ ]=12x4x2\begin{aligned}-(1-2x)^{-1} &=-1\left[1 + (-1)(-2x) + \dfrac{(-1)(-2)}{2!}(-2x)^2 + \dots\right]\\&= -1 - 2x - 4x^2 - \dots\end{aligned}​​


And this holds when x<12|x| < \dfrac12.


The expansion of 1x+1=(1+x)1\dfrac{1}{x+1} = (1+x)^{-1} is :


(1+x)1=[1+(1)x+(1)(2)2!x2+ ]=1x+x2+\begin{aligned}(1 + x)^{-1} &= \left[1 + (-1)x + \dfrac{(-1)(-2)}{2!}x^2 + \dots\right]\\&= 1 -x + x^2 + \dots\end{aligned}​​


And this holds when x<1|x| < 1.


The sum of these is:


(1x+x2+ )+(12x4x2 )=3x3x2(1 - x + x^2 + \dots) +(-1 - 2x - 4x^2 - \dots) = -3x -3x^2 - \dots​​


And this holds when x<12|x| < \left|\dfrac12\right|


Therefore, the terms up to the x2x^2 term in the expansion of 3x2x2+x1\dfrac{3x}{2x^2 + x - 1} are 3x3x2\underline{-3x - 3x^2 - \dots} and this expansion holds when x<12|x| < \dfrac12.


Products of binomial expansions

To compute the expansion of (a+bx)n(c+dx)m(a+bx)^n(c + dx)^m up to the xkx^k​ term, compute the expansions of both (a+bx)n(a+bx)^n​ and (c+dx)m(c+dx)^m​ up to the xkx^k term, and take the product of these.


The range of values of xx for which this expansion holds is the interval for which both the expansions of (a+bx)n(a + bx)^n​ and (c+dx)m(c+dx)^m​​ hold, so if abcd\left|\dfrac{a}{b}\right| \le \left|\dfrac{c}{d}\right|​​ then this is x<ab|x| < \left|\dfrac{a}{b}\right|.

The same holds when adding more than two terms of the form (a+bx)n(a+bx)^n together, and the range of values for which the expansion of the sum will hold is the range of values for which the expansion holds for all of the terms being summed simultaneously.



Example 2

Find the coefficient of the x2x^2​ term in the expansion of:

 12xx2+4x+43\sqrt[3]{\dfrac{\dfrac12 - x}{x^2 + 4x + 4}}


Rewrite the expression as a product of binomials:


12xx2+4x+43=(12x)13(2+x)23\sqrt[3]{\dfrac{\dfrac12 - x}{x^2 + 4x + 4}} = \left(\dfrac12 - x\right)^{\dfrac13}\left(2 + x\right)^{-\dfrac23}​​


Expand these up to the x2x^2 term:


(12x)13(2+x)23=(12)13(12x)13(2)23(1+12x)23=12[1+(13)(2x)+(13)(23)2!(2x)2+ ]×[1+(23)(12x)+(23)(53)2!(12x)2+ ]=12[1+23x49x2+ ][1+13x+536x2+ ]\begin{aligned}\left(\dfrac12 - x\right)^{\dfrac13}\left(2 + x\right)^{-\dfrac23} &= \left(\dfrac12\right)^{\dfrac13}\left(1 - 2x\right)^{\dfrac13}\left(2\right)^{-\dfrac23}\left(1 + \dfrac12x\right)^{-\dfrac23}\\&= \dfrac12\left[1 + \left(\dfrac13\right)(-2x) + \dfrac{\left(\dfrac13\right)\left(-\dfrac23\right)}{2!}(-2x)^2 + \dots\right] \\& \qquad \times \left[1 + \left(-\dfrac23\right)\left(\dfrac12x\right) + \dfrac{\left(-\dfrac23\right)\left(-\dfrac53\right)}{2!}\left(\dfrac12x\right)^2 + \dots\right]\\&=\dfrac12\left[1 + -\dfrac23x - \dfrac49x^2 + \dots\right]\left[1 + -\dfrac13x + \dfrac{5}{36}x^2 + \dots\right]\\\end{aligned}​​


The x2x^2 term of this is therefore:


12(1×536+(23)×(13)49×1)x2=124x2\dfrac12\left(1 \times\dfrac{5}{36} +\left(-\dfrac23\right)\times\left(-\dfrac13\right) -\dfrac49 \times 1\right)x^2 = -\dfrac{1}{24}x^2​​


Therefore, the coefficient of the x2x^2 term in the expansion of 12xx2+4x+43\sqrt[3]{\dfrac{\dfrac12 - x}{x^2 + 4x + 4}} is 124\underline{-\dfrac{1}{24}}.



Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the coefficient of x^k in the expansion of (a+bx)^n + (c+dx)^m?

How do I work out the expansion of a sum of binomials?

How do I work out the expansion of a product of binomials?

Beta

I'm Vulpy, your AI study buddy! Let's study together.