Everything to learn better...

Home

Maths

Binomial expansion II

Binomial expansion with partial fractions

Binomial expansion with partial fractions

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Alice

Summary

Binomial expansion with partial fractions

In a nutshell

Partial fractions can be used to break apart more complicated expressions into sums of simpler expressions, and hence help you find their expansions.



Finding the expansion of more complicated expressions

Given an expression of the form P(x)Q(x)\dfrac{P(x)}{Q(x)}​ where the degree of P(x)P(x)​ is strictly less than that of Q(x)Q(x)​, you can often use partial fractions to rewrite this expression as a sum of expressions of the form A(ax+b)\dfrac{A}{(ax + b)}​ and A(ax+b)2\dfrac{A}{(ax + b)^2}​. The binomial expansion formula allows you to find expansions for all such terms (valid when x<ab|x| < \left|\dfrac{a}{b}\right|​ for values of nn other than are non-negative integers). The sum of these expansions gives the expansion for the original expression.


Example 1

Find the first three terms in the expansion of 7x217x29(2x)2(3+2x)\dfrac{7x^2 - 17x - 29}{(2-x)^2(3+2x)} and find the range of values of xx for which this expansion is valid.


Use partial fractions:

7x217x29(2x)2(3+2x)=A2x+B(2x)2+C3+2x7x217x29=(3+2x)(2x)A+(3+2x)B+(2x)2C7x217x29=(C2A)x2+(A+2B4C)x+(6A+3B+4C)\begin{aligned}\dfrac{7x^2 - 17x - 29}{(2-x)^2(3+2x)} &= \dfrac{A}{2-x} + \dfrac{B}{(2-x)^2} + \dfrac{C}{3 + 2x}\\\\7x^2 - 17x - 29&=(3+2x)(2-x)A + (3+2x)B + (2-x)^2C\\\\7x^2 - 17x - 29 &= (C - 2A)x^2 + (A + 2B -4C)x + (6A + 3B + 4C)\end{aligned}​​​


Compare coefficients to obtain the system of linear equations:

7=C2A17=A+2B4C29=6A+3B+4C\begin{aligned}7 &= C - 2A\\-17 &= A + 2B - 4C\\-29 &= 6A + 3B + 4C\end{aligned}​​


Solve these to get the values:

A=3B=5C=1\begin{aligned}A &= -3\\B &= -5\\C &= 1\end{aligned}​​



So, you have that:

7x217x29(2x)2(3+2x)=32x+5(2x)2+13+2x\dfrac{7x^2 - 17x - 29}{(2-x)^2(3+2x)} = \dfrac{-3}{2-x} + \dfrac{-5}{(2-x)^2} + \dfrac{1}{3 + 2x}​​



The expansion of 32x=32(1x2)1\dfrac{-3}{2-x} = -\dfrac32\left(1 - \dfrac{x}{2}\right)^{-1} is:


32(1x2)1=32[1(x2)+(1)(2)2!(x2)2+ ]=323x43x28+\begin{aligned}-\dfrac32\left(1 - \dfrac{x}{2}\right)^{-1} &= -\dfrac32\left[1 - \left(-\dfrac{x}{2}\right) + \dfrac{(-1)(-2)}{2!}\left(-\dfrac{x}{2}\right)^2 + \dots\right]\\&= -\dfrac32 - \dfrac{3x}{4} - \dfrac{3x^2}{8} + \dots\end{aligned}​​


And this is valid while x<2|x| < 2.


The expansion of 5(2x)2=54(1x2)2\dfrac{-5}{(2-x)^2} = -\dfrac54\left(1-\dfrac{x}{2}\right)^{-2} is:


54(1x2)2=54[12(x2)+(2)(3)2!(x2)2+ ]=545x415x216+\begin{aligned}-\dfrac54\left(1 - \dfrac{x}{2}\right)^{-2} &= -\dfrac54\left[1 -2\left(-\dfrac{x}{2}\right) + \dfrac{(-2)(-3)}{2!}\left(-\dfrac{x}{2}\right)^2 + \dots\right]\\&= -\dfrac54 - \dfrac{5x}{4} - \dfrac{15x^2}{16} + \dots\end{aligned}​​


And this is valid while x<2|x| < 2.


The expansion of 13+2x=13(1+2x3)1\dfrac{1}{3 + 2x} = \dfrac13\left(1 + \dfrac{2x}{3}\right)^{-1} is:


13(1+2x3)1=13[1(2x3)+(1)(2)2!(2x3)2+ ]=132x9+4x227+\begin{aligned}\dfrac13\left(1 + \dfrac{2x}{3}\right)^{-1} &= \dfrac13\left[1 - \left(\dfrac{2x}{3}\right) + \dfrac{(-1)(-2)}{2!}\left(\dfrac{2x}{3}\right)^2 + \dots\right]\\&= \dfrac13 - \dfrac{2x}{9} + \dfrac{4x^2}{27} + \dots\end{aligned}​​


And this is valid while x<32|x| < \dfrac32.


Adding these together, you have that the first three terms in the expansion of 7x217x29(2x)2(3+2x)\dfrac{7x^2 - 17x - 29}{(2-x)^2(3+2x)}​ are:


291220x9503x2432+-\dfrac{29}{12} - \dfrac{20x}{9} - \dfrac{503x^2}{432} + \dots​​


And this is only valid when all three other series have valid expansions, i.e. while x<32|x| < \dfrac32.


Therefore, the first three terms in the expansion of 7x217x29(2x)2(3+2x)\dfrac{7x^2 - 17x - 29}{(2-x)^2(3+2x)} are 291220x9503x2432+\underline{-\dfrac{29}{12} - \dfrac{20x}{9} - \dfrac{503x^2}{432} + \dots} and this is valid while x<32\underline{|x| < \dfrac32}.





Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

When is the expansion of (a + bx)^n an infinite series?

When can I use partial fractions on P(x)/Q(x)?

How do I find the series expansion of a ratio of polynomials?

Beta

I'm Vulpy, your AI study buddy! Let's study together.