Everything to learn better...

Repeated factors

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Labib

Summary

Repeated factors

​​In a nutshell

A single fraction with two distinct linear factors in its denominator can be split into two separate fractions with linear denominators. This is what is known as splitting fraction into partial fractions. When the denominator contains repeated linear factors, you can split this into two or more separate functions.



Repeated factors

​​Procedure

1.
Factorise the denominator, if required.
2.
Set A, B, CA, \ B, \ C \dots as numerators of your partial fractions.
3.
Set the denominator of one of the fractions as the repeated single factor on its own. Set the denominator of another fraction as the factor repeated as it was in the original fraction.
4.
Add the fractions.
5.
Using substitution or by comparing coefficients, find the values of A,B,C...A, B, C...​​


Example 1

Split the following fraction into partial fractions 10x210x+17(2x+1)(x26x+9)\cfrac{10x^2 - 10x +17}{(2x+1)(x^2-6x + 9)}


First, factorise the denominator.

10x210x+17(2x+1)(x3)2\cfrac{10x^2 - 10x +17}{(2x+1)(x-3)^2}​​


Now set A, BA,\ B and CC as numerators of your partial fractions.

10x210x+17(2x+1)(x3)2=A2x+1+Bx3+C(x3)2\cfrac{10x^2 - 10x + 17}{(2x+1)(x-3)^2}= \cfrac{A}{2x+1} + \cfrac{B}{x-3}+\cfrac{C}{(x-3)^2}​​


Operate as usual, e.g. add the fractions (in order to do so, you need to find the common denominator)

10x210x+17(2x+1)(x3)2=A2x+1+Bx3+C(x3)2=A(x3)2(2x+1)(x3)2+B(2x+1)(x3)(2x+1)(x3)2+C(2x+1)(2x+1)(x3)2=A(x3)2+B(2x+1)(x3)+C(2x+1)(2x+1)(x3)2\begin{aligned}\cfrac{10x^2 - 10x + 17}{(2x+1)(x-3)^2}&= \cfrac{A}{2x+1} + \cfrac{B}{x-3}+\cfrac{C}{(x-3)^2}\\\\&=\cfrac{A(x-3)^2}{(2x+1)(x-3)^2} + \cfrac{B(2x+1)(x-3)}{(2x+1)(x-3)^2} + \cfrac{C(2x+1)}{(2x+1)(x-3)^2}\\\\&=\cfrac{A(x-3)^2 + B(2x+1)(x-3)+ C(2x+1)}{(2x+1)(x-3)^2}\end{aligned}​​

The numerators are equal, thus it is obtained

10x210x+17=A(x3)2+B(2x+1)(x3)+C(2x+1)10 x^2 - 10 x + 17 = A(x-3)^2 + B(2x+1)(x-3) + C(2x +1)​​


Substitute x=3:x=3:

10×3210×3+17=A(33)2+B(2×3+1)(33)+C(2×3+1)9030+17=7C\begin{aligned}10 \times 3^2 - 10\times 3 + 17 &= A(3-3)^2 + B(2\times 3+1)(3-3) + C(2 \times 3 +1)\\90 - 30 + 17 &= 7C \end{aligned}

​​​

C=11\underline{C = 11}​​


Substitute x=12:x=-\cfrac{1}{2}:

10(12)210(12)+17=A((12)3)+B(2(12)+1)((12)3)+C(2(12)+1)\begin{aligned}10 \left(-\cfrac{1}{2}\right)^2 - 10 \left(-\cfrac{1}{2}\right) + 17 &= A\left( \left(-\cfrac{1}{2}\right)-3\right) + B\left(2 \left(-\cfrac{1}{2}\right)+1\right)\left( \left(-\cfrac{1}{2}\right)-3\right) + C\left(2 \left(-\cfrac{1}{2}\right) +1\right)\end{aligned}​​


104+5+17=A494492=49A4\begin{aligned}\cfrac{10}{4} + 5 + 17 &= -A\cfrac{49}{4}\\\\\cfrac{49}{2}& = -\cfrac{49A}{4}\end{aligned}​​

​​​

A=2\underline{A = -2}​​


Once the constants AA and CC are known, calculate B as it follows

10x210x+17=2(x3)2+B(2x+1)(x3)+11(2x+1)10x210x+17=2x212x+18+2Bx25Bx3B+22x+11\begin{aligned} 10 x^2 - 10 x + 17 &= 2(x-3)^2 + B(2x+1)(x-3) + 11(2x +1) \\10 x^2 - 10 x + 17 &= 2x^2 - 12x + 18 + 2Bx^2 -5Bx -3B + 22x +11 \end{aligned}​​

​​​

Equate x2x^2 terms, obtaining

10x2=2x2+2Bx210x^2= 2x^2 + 2 Bx^2

B=4\underline{B=4}​​

In conclusion:

10x210x+17(2x+1)(x3)2=22x+1+4x3+11(x3)2\underline{\cfrac{10x^2 - 10x + 17}{(2x+1)(x-3)^2}= \cfrac{2}{2x+1} + \cfrac{4}{x-3}+\cfrac{11}{(x-3)^2}}​​



Example 2

Split the following fraction into partial fractions 2x39x2(x+3)\cfrac{2x-39}{x^2(x+3)}

​​

As the denominator is already factorised, set A, B, CA, \ B, \ C\dots as numerators of your partial fractions.

2x39x2(x+3)=Ax+Bx2+Cx+3\cfrac{2x-39}{x^2(x+3)} = \cfrac{A}{x}+ \cfrac{B}{x^2 } + \cfrac{C}{x+3}​​


Now find the common denominator and add the fractions. 

2x39x2(x+3)=Ax+Bx2+Cx+3=Ax(x+3)x2(x+3)+B(x+3)x2(x+3)+Cx2x2(x+3)=Ax(x+3)+B(x+3)+Cx2x2(x+3)\begin{aligned}\cfrac{2x-39}{x^2(x+3)}& = \cfrac{A}{x}+ \cfrac{B}{x^2 } + \cfrac{C}{x+3}\\\hspace{4mm}\\& = \cfrac{Ax(x+3)}{x^2(x+3)}+ \cfrac{B (x+3) }{x^2(x+3)} + \cfrac{Cx^2}{x^2(x+3)}\\\hspace{4mm}\\&=\cfrac{Ax(x+3) + B(x+3) + Cx^2}{x^2 (x+3)}\end{aligned}​​


The numerators are equal, thus it is obtained: 

2x39=Ax(x+3)+B(x+3)+Cx2==Ax2+3Ax+Bx+3B+Cx2\begin{aligned}2x - 39 &= Ax(x+3) + B(x+3) + Cx^2=\\ &= Ax^2 +3Ax +Bx + 3B + Cx^2\end{aligned}​​


Using the equating coefficients methods, you have: 

{0x2=x2(A+C)2x=x(3A+B)39=3B\begin{cases}\begin{aligned}0x^2 & = x^2(A+C) \\2x &= x(3A+B)\\-39 &= 3 B\end{aligned}\end{cases}​​


From the last equation you find that B=13\underline{B=-13}. Therefore, in the second equation you have:

2=(3A+B) A=52 = (3A+B) \implies \underline{A=5}​​


And in the first one:

0=A+C C=50 = A+C \implies \underline{C=-5}​​


In conclusion:

2x39x2(x+3)=5x13x25x+3\underline{\cfrac{2x-39}{x^2(x+3)} = \cfrac{5}{x}- \cfrac{13}{x^2 } - \cfrac{5}{x+3}}​​



Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is a repeated factor in a polynomial?

What is the first step when working with partial fractions with repeated denominators?

How do you calculate partial fractions with repeated factors?

Beta

I'm Vulpy, your AI study buddy! Let's study together.