Everything to learn better...

Home

Maths

Differentiation I

Differentiation from first principles

Differentiation from first principles

Select Lesson

Exam Board

Select an option

Explainer Video

Loading...
Tutor: Toby

Summary

Differentiation from first principles

In a nutshell

Differentiation from first principles is a method of calculating the gradient function f(x)f'(x) from an original function f(x)f(x). The gradient function f(x)f'(x) can be found by considering the gradient formula, together with two pairs of coordinates which are a small distance, hh, away from each other.​



The gradient formula

When two points are joined up to make a chord, the gradient of the chord can be calculated by using the coordinates of the two points A(x1,y1)A(x_1,y_1)  and B(x2,y2)B(x_2,y_2).


Maths; Differentiation I; KS5 Year 12; Differentiation from first principles


The gradient is given by:

m=ΔyΔx=y2y1x2x1m= \dfrac {\Delta y}{\Delta x} = \dfrac {y_2-y_1}{x_2-x_1}​​


Consider the function f(x)f(x), where a point AA has co-ordinates (x,f(x))\big (x, f(x) \big) and point BB has coordinates a small distance, hh, away, giving B((x+h),f(x+h))B\big ((x+h),f(x+h)\big ).


Maths; Differentiation I; KS5 Year 12; Differentiation from first principles


The gradient is given by:

m=f(x+h)f(x)hm=\dfrac {f(x+h)-f(x)}{h}​​

To find the gradient at AA, consider bringing the point BB closer and closer to AA. As BB approaches AA, the gradient of the chord will get closer to the gradient of the curve at AA. It is possible to bring BB closer to AA by making hh smaller until it approaches 00. The gradient of the curve at AA is defined as the limiting value of the gradient of ABAB as hh approaches 00, and is written as:


f(x)=limh0 f(x+h)f(x)h\boxed{f'(x)=\underset{h\rightarrow 0}{lim} \space\dfrac {f(x+h)-f(x)}{h}}​​


​​​

Differentiating from first principles

Using this rule is called differentiating from first principles. It can be used to find the derivative or gradient function in algebraic terms, or it can be applied to find the numerical value of the gradient at a particular point.


PROCEDURE

1.1.​​

Use the function f(x)f(x) to find the value of f(x+h)f(x+h).​

2.2.​​

Substitute f(x)f(x) and f(x+h)f(x+h) into f(x)=limh0 f(x+h)f(x)hf'(x)=\underset{h\rightarrow 0}{lim} \space \dfrac {f(x+h)-f(x)}{h}.

3.3.​​

Simplify the numerator and factorise by taking out hh

4.4.​​

Cancel hh and find f(x)f'(x) in terms of xx and hh.

5.5.​​

Find the limiting value of f(x)f'(x) as h0h \rightarrow 0.​


Example 1

Use differentiation from first principles to find the derivative of f(x)=x3f(x)=x^3.


For the function f(x)=x3f(x)=x^3 find f(x+h)f(x+h).

f(x+h)=(x+h)3f(x+h) = (x+h)^3​​


Multiply out and simplify.

f(x+h)=x3+3x2h+3xh2+h3f(x+h)=x^3+3x^2h+3xh^2+h^3​​


Note: (x+h)3(x+h)^3 can be evaluated by expanding triple brackets or using the binomial expansion.


Substitute f(x)f(x) and f(x+h)f(x+h) into f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\rightarrow 0}{lim} \dfrac {f(x+h)-f(x)}{h} and simplify.

​​

f(x)=limh0 f(x+h)f(x)hf(x)=limh0 x3+3x2h+3xh2+h3x3hf(x)=limh0 3x2h+3xh2+h3hf(x)=limh0 h(3x2+3xh+h2)hf(x)=limh03x2+3xh+h2\begin{aligned}f'(x)&=\underset{h\rightarrow 0}{lim}\space \dfrac {f(x+h)-f(x)}{h} \\\\f'(x)&=\underset{h\rightarrow 0}{lim} \space \dfrac {x^3+3x^2h+3xh^2+h^3 - x^3}{h} \\\\f'(x)&=\underset{h\rightarrow 0}{lim} \space \dfrac {3x^2h+3xh^2+h^3}{h} \\\\f'(x)&=\underset{h\rightarrow 0}{lim} \space \dfrac {h(3x^2+3xh+h^2)}{h} \\\\f'(x)&=\underset{h\rightarrow 0}{lim} \quad3x^2+3xh+h^2\\\end{aligned}​​


Find the limiting value of f(x)f'(x) as h0h \rightarrow 0. As h0, 3xh0 and h20h \rightarrow 0, \ 3xh \rightarrow 0 \space and \space h^2 \rightarrow 0.​​

f(x)=3x2f'(x) = 3x^2​​


Therefore, the derivative of f(x)=x3f(x)=x^3 is f(x)=3x2\underline{f'(x)=3x^2}.​


Example 2

The point A(2,9)A(2,9) lies on the curve y=x2+5y=x^2+5. Use differentiation from first principles to find the gradient at AA.


Find f(2)f(2).

f(x)=x2+5f(2)=22+5=9\begin{aligned}f(x)& = x^2+5 \\f(2)&= 2^2+5 \\&= 9 \\\end {aligned}​​


Find f(2+h)f(2+h).

f(x+h)=(x+h)2+5f(2+h)=(2+h)2+5=4+4h+h2+5=9+4h+h2\begin{aligned}f(x+h) &= (x+h)^2+5 \\f(2+h)&=(2+h)^2+5 \\&= 4+4h+h^2+5 \\&=9 + 4h+h^2\end {aligned}​​


Substitute f(2)f(2) and f(2+h)f(2+h) into f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\rightarrow 0}{lim} \dfrac {f(x+h)-f(x)}{h}.

​​

f(2)=limh0 f(2+h)f(2)hf(2)=limh0 9+4h+h29hf(2)=limh0 4h+h2hf(2)=limh0 h(4+h)hf(2)=limh0 (4+h)\begin{aligned}f'(2)&=\underset{h\rightarrow 0}{lim}\space \dfrac {f(2+h)-f(2)}{h} \\\\f'(2)&=\underset{h\rightarrow 0}{lim} \space \dfrac {9+4h+h^2-9}{h} \\\\f'(2)&=\underset{h\rightarrow 0}{lim} \space \dfrac {4h+h^2}{h} \\\\f'(2)&=\underset{h\rightarrow 0}{lim} \space \dfrac {h(4+h)}{h} \\\\f'(2)&=\underset{h\rightarrow 0}{lim} \space (4+h) \\\end {aligned}​​


Find the limiting value of f(2)f'(2). As h0h \rightarrow 04+h44+h \rightarrow 4.​

f(2)=4f'(2)= 4​​


Therefore, the gradient of the curve at y=x2+5y=x^2+5 at A(2,9)A(2,9) is 4\underline{4}.​

​​​



Create an account to read the summary

Exercises

Create an account to complete the exercises

FAQs - Frequently Asked Questions

What is the limiting value of the gradient?

What is the gradient formula?

What is differentiation from first principles?

Beta

I'm Vulpy, your AI study buddy! Let's study together.