Solving binomial problems In a nutshell It's possible to use parts of the binomial expansion formula to work out the coefficient of a general term in ( x + y ) n (x+y)^n ( x + y ) n .
The general term The general term in the expansion of ( x + y ) n (x+y)^n ( x + y ) n is equal to ( n r ) x n − r y r \binom{n}{r}x^{n-r}y^r ( r n ) x n − r y r . This is the case as there are ( n r ) \binom{n}{r} ( r n ) ways of selecting r r r copies of y y y from the n n n bracketed terms.
Example 1 What is the coefficient of t 3 t^3 t 3 in the expansion of ( 5 − t 2 ) 5 (5-\dfrac{t}{2})^5 ( 5 − 2 t ) 5 ?
The general term of ( x + y ) n (x+y)^n ( x + y ) n is equal to ( n r ) x n − r y r \binom{n}{r}x^{n-r}y^r ( r n ) x n − r y r . Substitute n = 5 n = 5 n = 5 , r = 3 r = 3 r = 3 , x = 5 x = 5 x = 5 and y = ( − t 2 ) y = (-\dfrac{t}{2}) y = ( − 2 t ) into this expression:
( n r ) x n − r y r = ( 5 3 ) 5 ( 5 − 3 ) ( − t 2 ) 3 = 10 × 25 × − t 3 8 = − 125 4 t 3 \begin{aligned}\binom{n}{r}x^{n-r}y^r&= \binom{5}{3}5^{(5-3)}(-\dfrac{t}{2})^3 \\&= 10 \times 25 \times -\dfrac{t^3}{8} \\&=-\dfrac{125}{4}t^3\end{aligned} ( r n ) x n − r y r = ( 3 5 ) 5 ( 5 − 3 ) ( − 2 t ) 3 = 10 × 25 × − 8 t 3 = − 4 125 t 3
Therefore, the coefficient of t 3 t^3 t 3 in the expansion of ( 5 − t 2 ) 5 \Big(5-\dfrac{t}{2}\Big)^5 ( 5 − 2 t ) 5 is − 125 4 ‾ \underline{-\dfrac{125}{4}} − 4 125 .
Example 2 Given that the coefficient of t 4 t^4 t 4 in the expansion of ( 3 − s t ) 8 (3 - st)^8 ( 3 − s t ) 8 is equal to 315 2 \dfrac{315}{2} 2 315 , find two possible values of s s s .
Substitute n = 8 n=8 n = 8 , r = 4 r=4 r = 4 , x = 3 x = 3 x = 3 and y = − s t y= -st y = − s t into the general term to get:
( n r ) x n − r y r = ( 8 4 ) 3 4 ( − s t ) 4 = 70 × 81 s 4 t 4 = 5670 s 4 t 4 \begin{aligned}\binom{n}{r}x^{n-r}y^r&=\binom{8}{4}3^4(-st)^4 \\ &= 70 \times 81s^4t^4\\&= 5670s^4t^4\end{aligned} ( r n ) x n − r y r = ( 4 8 ) 3 4 ( − s t ) 4 = 70 × 81 s 4 t 4 = 5670 s 4 t 4
Rearrange the expression 315 2 = 5670 s 4 \dfrac{315}{2} = 5670s^4 2 315 = 5670 s 4 so that s 4 s^4 s 4 is the subject to get:
s 4 = 1 36 s^4 = \dfrac{1}{36} s 4 = 36 1
Deduce that s 2 = ± 1 6 s^2 = \pm \dfrac{1}{6} s 2 = ± 6 1 , and so two possible values of s s s are given by ± 1 6 \pm \dfrac{1}{\sqrt{6}} ± 6 1 , as these square to 1 6 \dfrac{1}{6} 6 1 .
Rationalise the denominator of ± 1 6 \pm\dfrac{1}{\sqrt{6}} ± 6 1 to get:
± 1 6 = ± 1 × 6 6 × 6 = ± 6 6 \begin{aligned}\pm\dfrac{1}{\sqrt{6}} &= \pm\dfrac{1 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \\&= \pm\dfrac{\sqrt{6}}{6}\end{aligned} ± 6 1 = ± 6 × 6 1 × 6 = ± 6 6
Therefore, 2 2 2 possible values for s s s are ± 6 6 ‾ \underline{\pm\dfrac{\sqrt{6}}{6}} ± 6 6 .