Alkoholsynthese-Nucleophile Substitution
Aldehyde und Ketone-Grundlagen
Aldehyde und Ketone-Reaktionen
Carbonsäuren: Grundlagen & Carboxylgruppe
Carbonsäuren: Eigenschaften & Herstellung
Ether: Herstellung und Peroxide
Herstellung und Eigenschaften der Carbonsäureester
Herstellung natürlicher und künstlicher Aromastoffe
Einteilung von Kunststoffen nach Herstellung & Eigenschaften
Struktur und Eigenschaften von Kunststoffen
Polykondensation: Polyamide & Polyester
Polymerisation: Vom Monomer zum Polymer
Polyaddition am Beispiel Polyurethan
Maßgeschneiderte Kunststoffe und Kunststoffverarbeitung
Umweltbelastung durch Kunststoffe - Recycling - Biokunststoffe
Alkoholsynthese-Nucleophile Substitution
Aldehyde und Ketone-Grundlagen
Aldehyde und Ketone-Reaktionen
Carbonsäuren: Grundlagen & Carboxylgruppe
Carbonsäuren: Eigenschaften & Herstellung
Ether: Herstellung und Peroxide
Herstellung und Eigenschaften der Carbonsäureester
Herstellung natürlicher und künstlicher Aromastoffe
Einteilung von Kunststoffen nach Herstellung & Eigenschaften
Struktur und Eigenschaften von Kunststoffen
Polykondensation: Polyamide & Polyester
Polymerisation: Vom Monomer zum Polymer
Polyaddition am Beispiel Polyurethan
Maßgeschneiderte Kunststoffe und Kunststoffverarbeitung
Umweltbelastung durch Kunststoffe - Recycling - Biokunststoffe
Erstelle ein Konto, um mit den Übungen zu beginnen.
Einfache Indikatoren für die Erhöhung der Entropie bei chemischen Reaktionen sind: -Größere Teilchenzahl bei den Produkten gegenüber den Edukten -Bildung von Flüssigkeiten und Gasen aus festen Edukten.
Theoretisch hat jeder Stoff am absoluten Nullpunkt (0 K = −273,15 °C) eine Entropie von null, dieser kann jedoch nicht erreicht werden.
Die Entropie ist ein Maß für die Unordnung eines Systems und besitzt das Symbolzeichen S und die Einheit J/K.
Beta